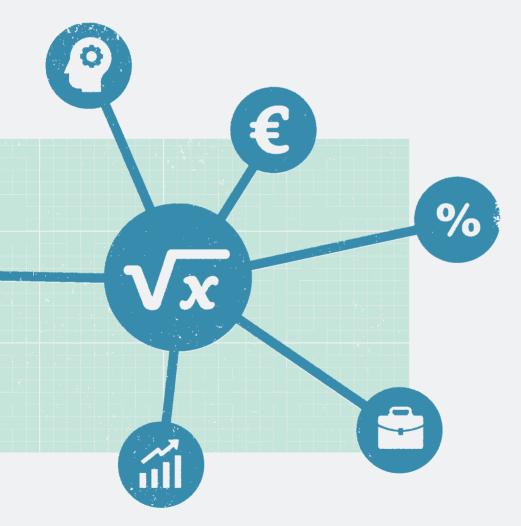
Mathematics for Economics and Business

Roman Adillon, Mikel Álvarez, Dolors Gil, Lambert Jorba



Contents

	MATRICES, DETERMINANT AND RANK	11
1.1.	Matrix and Dimensions of a Matrix	11
	Operations with Matrices	13
1.2.1.	Addition of Matrices	13
1.2.2.	Subtraction of Matrices	15
1.2.3.	Scalar Multiplication of a Matrix	15
1.2.4.	Matrix Product	16
1.3.	Determinant of a Square Matrix	20
1.4.	Transpose, Adjugate and Inverse of a Matrix	25
	Transpose of a Matrix	25
1.4.2.	Adjugate of a Matrix	27
1.4.3.	Inverse of a Matrix	28
1.5.	Rank of a Matrix	30
1.5.1.	Submatrices and Minors of a Matrix	30
1.5.2.	Concept and Computation of the Rank of a Matrix	32
1.6.	Self-assessment Test	34
1.7.	Solutions to the Proposed Exercises	36
1.8.	Solutions to the Self-assessment Test	46
2.	SYSTEMS OF LINEAR EQUATIONS	47
	Concept and Matrix Notation	47
	Compatibility and the Rouché-Capelli theorem	50
	Classification of Systems of Equations	50
2.2.2.	Rouché-Capelli theorem	- 51
2.3.	Methods for Solving Systems of Equations	57
	The Substitution Method	58
2.3.2.	Reduction and Gauss' Methods	59
2.3.3.	Cramer's Method	67
2.4.	Self-assessment Test	71
	Solutions to the Proposed Exercises	73
2.6.	Solutions to the Self-assessment Test	90

3. Vector Space	93
3.1. The Concept of Vector Space	93
3.2. Linear Combination of Vectors	95
3.3. Linear Independence of Vectors	97
3.4. Spanning Set	101
3.5. Vector Space Basis	103
3.6. Vector Subspace	107
3.7. Self-assessment Test	112
3.8. Solutions to the Proposed Exercises	113
3.9. Solutions to the Self-assessment Test	122
4. Inner Product, Norm and Distance. Quadratic Forms	125
4.1. Inner Product, Norm and Distance	125
4.1.1. Inner Product	125
4.1.2. Norm of a Vector	126
4.1.3. Distance	131
4.1.4. Topological Properties of Sets in \mathbb{R}^n	131
4.2. Quadratic Forms	134
4.2.1. Concept of a Quadratic Form	134
4.2.2. Classification of Quadratic Forms by using Principal Minors	137
4.2.3. Classification of Quadratic Forms by using Eigenvalues	138
4.2.4. Classification of Constrained Quadratic Forms	141
4.3. Self-assessment Test	142
4.4. Solutions to the Proposed Exercises	143
4.5. Solutions to the Self-assessment Test	156
5. Real Functions of One Variable	159
5.1. Real Function of One Variable. Domain	159
5.1.1. Polynomial Functions	159
5.1.2. Absolute Value Function	162
5.1.3. Integer Part Function	163
5.1.4. Exponential Function	164
5.1.5. Logarithmic Function	166
5.1.6. Trigonometric Functions	169
5.1.7. Composition of Functions	173
5.1.8. Calculation of the Domain	175
5.2. Limits and Continuity	179
5.2.1. Limit of a Function at a Point	179
5.2.2. Continuity	182
5.2.3. Discontinuity	184
5.2.4. Continuity Theorems	186

5.3. Derivatives	189
5.3.1. Concept and Interpretation	189
5.3.2. Calculation of Derivatives	191
5.3.3. Theorems about Differentiability	194
5.3.4. Higher Order Derivatives	197
5.3.5. Taylor's Formula	198
5.4. Self-assessment Test	201
5.5. Solutions to the Proposed Exercises	202
5.6. Solutions to the Self-assessment Test	220
6. Applications of the Derivative	223
6.1. Tangent Line	223
6.2. Marginality	225
6.3. Elasticity	227
6.4. Increase, Decrease and Optimums of a Function	229
6.5. Curvature of a Function	234
6.6. Calculation of Limits: L'Hôpital's Rule	236
6.6.1. Indeterminate Limits of Type $\left\{ rac{0}{0} ight\}$ and $\left\{ rac{\infty}{\infty} ight\}$	236
6.6.2. Indeterminate Form of Type $\{0\cdot\infty\}$	237
6.6.3. Indeterminate Form of Type $\{\infty-\infty\}$	238
6.6.4. Exponential Indeterminate Forms of Type $\{1^\infty\}$, $\left\{\infty^0 ight\}$ and $\left\{0^0 ight\}$	239
6.7. Economic Applications	240
6.8. Self-assessment Test	245
6.9. Solutions to the Proposed Exercises	247
6.10. Solutions to the Self-assessment Test	265
7. Real Functions of Several Variables	269
7.1. Real Functions of Several Variables	269
7.1.1. Concept of Real Function of Several Variables	269
7.1.2. Domain of a Real Function of Several Variables	270
7.1.3. Level Curves	275
7.2. Vector Function	277
7.2.1. Composition of Functions of Several Variables	279
7.3. Limits and Continuity of a Function of Several Variables	280
7.3.1. Concept of Limit of Real and Vector Functions	280
7.3.2. Iterated Limits and Directional Limits	282
7.3.3. Continuity of a Function of Several Variables	284
7.4. Self-assessment Test	285
7.5. Solutions to the Proposed Exercises	286
7.6. Solutions to the Self-assessment Test	298

8. Differentiability of Functions of Several Variables	301
8.1. Partial and Directional Derivatives	301
8.2. Marginality and Elasticity	310
8.2.1. Marginality in Functions of Several Variables	310
8.2.2. Elasticity in Functions of Several Variables	311
8.3. Gradient Vector and Jacobian Matrix	315
8.4. Differentiable Functions	318
8.5. Differentiability Theorems	321
8.6. Higher Order Partial Derivatives. Hessian Matrix	326
8.7. Differentiation of Composite Functions. Chain Rule	329
8.8. Differentiation of Implicit Functions	333
8.9. Homogeneous Functions. Euler's Theorem	338
8.10. Self-assessment Test	342
8.11. Solutions to the Proposed Exercises	344
8.12. Solutions to the Self-assessment Test	362
9. Optimisation of Functions of Several Variables	365
9.1. Optimums of a Function of Several Variables	365
9.2. Necessary Conditions for Optimality	366
9.3. Sufficient Condition for Optimality	370
9.4. Optimums of Concave and Convex Functions	372
9.5. Self-assessment Test	374
9.6. Solutions to the Proposed Exercises	376
9.7. Solutions to the Self-assessment Test	389

The most simple use of a matrix is to organise data. From this point of view a matrix is nothing but a cabinet with drawers where we store information. However, in mathematics matrices are useful for many other reasons.

Even though in this chapter we will only study what a matrix is and the main concepts related to it, the student will discover multiple applications of matrices during the course of study. The most well known application is to solve systems of linear equations. Other examples include linear programming, solving of differential equations and the optimisation of functions of several variables.

1.1. MATRIX AND DIMENSIONS OF A MATRIX

Definition 1 (*Matrix and dimensions*). A matrix is a set of numbers arranged in rows and columns. The number of rows (m) and the number of columns (n) constitute the **dimensions** of a matrix, which will be denoted by $m \times n$.

Usually an $m \times n$ matrix is represented as follows:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

where a_{ij} stands for the element located at row "i" and column "j" of the matrix A.

Example 1. The matrix $A = \begin{pmatrix} 6 & 3 & 4 \\ 8 & 2 & 5 \end{pmatrix}$, that has two rows and three columns, is said to be a 2×3 matrix.

Example 2. A company has three production plants, p_1 , p_2 and p_3 , and uses raw materials from 10 different suppliers z_1, z_2, \ldots, z_{10} . Using a 3×10 matrix we can represent the quantities (described in thousands of kg, for instance) that each production plant uses from every supplier. The result could be

As an example, $a_{23} = 6$, indicates that the production plant p_2 has used 6000 kg from supplier z_3 .

Types of Matrices

By using the concept of dimension of a matrix, we can give a first classification of matrices:

- A square matrix is a matrix with the same number of rows and columns, that is, an $n \times m$ matrix where m = n. In a square matrix, we call the **main diagonal** the set of elements $a_{11}, a_{22}, \ldots, a_{nn}$.
- A **diagonal matrix** is a square matrix in which all the elements outside the main diagonal are zero.
- A **rectangular matrix** is a matrix in which the number of rows is different from the number of columns, that is, $m \neq n$.
- A **row vector** is a $1 \times n$ matrix, that is, a matrix with a single row.
- A **column vector** is an $m \times 1$ matrix, that is, a matrix with a single column.

Example 3:

• The matrix

$$A = \left(\begin{array}{cc} 4 & 3 \\ 1 & 5 \end{array}\right)$$

is a 2×2 square matrix. In general, an $n \times n$ square matrix is said to be a matrix of dimension n.

• Given the matrix

$$A = \left(\begin{array}{ccc} 3 & 3 & 5 \\ 1 & 0 & 2 \\ 3 & 1 & 8 \end{array}\right)$$

its main diagonal consists of the elements a_{11} , a_{22} and a_{33} . Hence, the main diagonal is $\{3, 0, 8\}$.

- The matrix $A = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 8 \end{pmatrix}$ is a diagonal matrix.
- The matrix $A = \begin{pmatrix} 2 & 3 & 4 \\ 5 & 2 & 1 \end{pmatrix}$ is a rectangular matrix whose dimensions are 2×3 .

Exercises

1. Find the dimensions of the following matrices:

$$A = \begin{pmatrix} 1 & 1 & 2 & 2 \\ -2 & 1 & 3 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 8 & 8 \\ 7 & 0 \end{pmatrix} \quad C = \begin{pmatrix} 2 & 2 & 1 \end{pmatrix}$$

Taking into account the dimensions, identify the type of each matrix.

2. Compute the value of x for which the matrix $A = \begin{pmatrix} x & x - 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$ is diagonal.

1.2. OPERATIONS WITH MATRICES

1.2.1. Addition of Matrices

Definition 2 (*Addition of matrices*). Given two matrices of the same dimensions, *A* and *B*, their **sum** is a new matrix of the same dimensions that is obtained by adding the elements located at the same positions in the two matrices.

Properties of the addition of matrices

The addition of matrices of the same dimensions satisfies the following properties:

- Associativity: (A + B) + C = A + (B + C)
- Commutativity: A + B = B + A
- Existence of the identity element: A + (0) = AThe zero matrix (0) is the matrix of the same dimensions as A, in which all the elements are 0.
- Every matrix A has a symmetric matrix: A + (-A) = (0)The symmetric matrix, (-A), is the matrix obtained by changing the sign of every element in the matrix A.

Example 4. A paper factory manufactures two different types of paper, p_1 and p_2 , that are sold to three different communities, c_1 , c_2 , and c_3 . The quantities of product that are sold weekly, in thousands of kg, can be represented by using a 2×3 matrix. Suppose that during the last two months the number of items sold have been

In order to calculate the total sales in the last two months, we have to add the matrices that indicate the monthly quantities. In this way, we obtain

$$\left(\begin{array}{ccc} 2 & 5 & 0 \\ 3 & 1 & 2 \end{array}\right) + \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 2 \end{array}\right) = \left(\begin{array}{ccc} 2+1 & 5+2 & 0+3 \\ 3+2 & 1+1 & 2+2 \end{array}\right)$$

That is, the number of items of each type that were sold in the last two months are described using matrix notation by

$$\begin{array}{ccc}
c_1 & c_2 & c_3 \\
\downarrow & \downarrow & \downarrow \\
p_1 \to & \begin{pmatrix} 3 & 7 & 3 \\ 5 & 2 & 4 \end{pmatrix}
\end{array}$$

1.2.2. Subtraction of Matrices

Definition 3 (Subtraction of matrices). Given two matrices of the same dimensions, A and B, the subtraction A - B is defined based on the sum and the concept of symmetric matrix introduced above. The subtraction A - B is defined by

$$A - B = A + (-B)$$

1.2.3. Scalar Multiplication of a Matrix

Definition 4 (*Scalar multiplication of a matrix*). Given a real number λ and a matrix A, the **multiplication** $\lambda \cdot A$ is a matrix of the same dimensions as A that is obtained by multiplying each element of the matrix by the real number λ .¹

Properties of the Scalar Multiplication of a Matrix

- Associativity: $(x \cdot y) \cdot A = x \cdot (y \cdot A)$
- Distributivity 1: $(x + y) \cdot A = x \cdot A + y \cdot A$
- Distributivity 2: $x \cdot (A + B) = x \cdot A + x \cdot B$
- Existence of the identity element: $1 \cdot A = A$

Example 5. A given distributor has demanded the prices for two different models, m_1 and m_2 , of high definition screens from a producer in the USA. The price of each model depends on the quality of the finished goods and there are three different qualities, q_1 , q_2 and q_3 , for each of the two models. The dollar prices have been presented in the following matrix:

$$\begin{array}{cccc}
 & q_1 & q_2 & q_3 \\
\downarrow & \downarrow & \downarrow \\
 & m_1 \to \\
 & m_2 \to \end{array}
\left(\begin{array}{ccccc}
 & 1300 & 1200 & 1000 \\
 & 2500 & 2300 & 2200
\end{array}\right)$$

I The term scalar denotes a real number.

In order to transform the prices to euros, we have to take into account the exchange rate. Suppose for instance that $\leq 1 = 1.6$, then the prices matrix in the European currency would be

$$\frac{1}{1.6} \cdot \left(\begin{array}{ccc} 1300 & 1200 & 1000 \\ 2500 & 2300 & 2200 \end{array}\right) = \left(\begin{array}{ccc} \frac{1300}{1.6} & \frac{1200}{1.6} & \frac{1000}{1.6} \\ \\ \frac{2500}{1.6} & \frac{2300}{1.6} & \frac{2200}{1.6} \end{array}\right)$$

By computing the fractions above, we obtain the desired result, expressed in euros:

$$\begin{array}{cccc}
q_1 & q_2 & q_3 \\
\downarrow & \downarrow & \downarrow \\
m_1 \to & \left(\begin{array}{cccc}
812.50 & 750.00 & 625.00 \\
1562.50 & 1437.50 & 1375.00
\end{array}\right)$$

1.2.4. Matrix Product

Definition 5 (Product of a row vector and a column vector). Let

$$A = (a_1 \ldots a_k)$$
 be a row vector and $B = \begin{pmatrix} b_1 \\ \vdots \\ b_k \end{pmatrix}$ be a column vector. The

product $A \cdot B$ is the real number that is obtained by multiplying the elements at the same positions in each matrix, and then adding up the results of the multiplication.

$$(a_1 \ldots a_k) \cdot \begin{pmatrix} b_1 \\ \vdots \\ b_k \end{pmatrix} = a_1 \cdot b_1 + \cdots + a_k \cdot b_k$$

Note that this product can only be made when the number of columns in matrix *A* coincides with the number of rows in matrix *B*.

Definition 6 (*Product of two matrices*). Given an $m \times k$ matrix, A, and a $k \times n$ matrix, B, the **product** $A \cdot B$ is a new $m \times n$ matrix where the element located in row "i" and column "j" is computed by multiplying row "i" of matrix A by column "j" of matrix B.

As we previously mentioned in the case of the product of a row vector and a column vector, note that the number of columns in the first matrix and the number of rows in the second one must coincide. Otherwise, it is not possible to multiply the matrices. Observe also, that the resulting matrix will have as many rows as the first matrix and as many columns as the second one.

$$\begin{array}{ccc}
A & \cdot & B & = C \\
m \times k & k \times n & m \times n \\
\downarrow & = & \downarrow
\end{array}$$

Properties of the Product of Matrices

The product of matrices satisfies the following properties:

- Associativity: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$
- Distributivity: $A \cdot (B + C) = A \cdot B + A \cdot C$
- The set of square matrices of dimension n has an identity element with respect to the product. This identity element is called the **identity matrix** of dimension n and is denoted by I_n . It is a diagonal matrix where the elements of the main diagonal are all equal to 1, that is

$$I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

and it holds that

$$A \cdot I_n = A = I_n \cdot A$$

We should be aware that the product of matrices is in general not commutative. In other words, the order of the factors may change the result of the product.

Example 6. Given the matrices below

$$A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \quad B = \begin{pmatrix} 0 & -1 & 3 \\ 3 & 2 & 5 \end{pmatrix}$$

we wonder:

- If is it possible to calculate the products $A \cdot B$ and $B \cdot A$?
- What is the result of each of these products, in case both operations can be carried out?

A is a 2 × 2 matrix and *B* is a 2 × 3 matrix. Therefore, it is possible to compute the product $A \cdot B$

$$\begin{array}{ccc}
A & \cdot & B & = C \\
2 \times 2 & 2 \times 3 & = 2 \times 3 \\
1 & -1 & & & \\
\end{array}$$

but it is not possible to compute the product $B \cdot A$

$$B \cdot A$$
 $2 \times 3 \quad 2 \times 2$

We compute $A \cdot B$

$$\left(\begin{array}{cc} 1 & 3 \\ 2 & 4 \end{array}\right) \cdot \left(\begin{array}{cc} 0 & -1 & 3 \\ 3 & 2 & 5 \end{array}\right) = \left(\begin{array}{cc} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \end{array}\right)$$

where

$$c_{11} = \begin{pmatrix} 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 3 \end{pmatrix} = 1 \cdot 0 + 3 \cdot 3 = 9$$

$$c_{12} = \begin{pmatrix} 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 2 \end{pmatrix} = 1 \cdot (-1) + 3 \cdot 2 = 5$$

$$c_{13} = \begin{pmatrix} 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 5 \end{pmatrix} = 1 \cdot 3 + 3 \cdot 5 = 18$$

$$c_{21} = \begin{pmatrix} 2 & 4 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 3 \end{pmatrix} = 2 \cdot 0 + 4 \cdot 3 = 12$$

$$c_{22} = \begin{pmatrix} 2 & 4 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 2 \end{pmatrix} = 2 \cdot (-1) + 4 \cdot 2 = 6$$

$$c_{23} = \begin{pmatrix} 2 & 4 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 5 \end{pmatrix} = 2 \cdot 3 + 4 \cdot 5 = 26$$

And we obtain
$$C = \begin{pmatrix} 9 & 5 & 18 \\ 12 & 6 & 26 \end{pmatrix}$$
.

Example 7. Consider the following method to compute the expenses of the purchases of several customers by using matrices. We build a matrix by writing the amounts of each commodity bought by a certain customer row-wise, using as many rows as customers. Next, we build a column vector that describes the prices of each of the commodities we consider. The product of these two matrices gives rise to a new column vector that depicts the total cost of the commodities purchased by each customer.

To keep it simple, suppose that there are two customers, A and B, and three commodities for sale, q_1 , q_2 and q_3 . The order of the first customer consists of 5 items of product q_1 , 7 items of q_2 and 0 items of q_3 . The second customer purchases 4, 0, and 8 items of commodities q_1 , q_2 and q_3 , respectively. If the price of the commodity q_1 is ≤ 230 , the price of q_2 is ≤ 540 and the price of q_3 is ≤ 101 , to find the expense of each customer we start by arranging the orders in a matrix.

$$\begin{array}{ccc} & q_1 & q_2 & q_3 \\ \downarrow & \downarrow & \downarrow \\ \text{customer A} \rightarrow & \begin{pmatrix} 5 & 7 & 0 \\ 4 & 0 & 8 \end{pmatrix} \end{array}$$

Next, we build the price vector
$$\begin{pmatrix} 230 \\ 540 \\ 101 \end{pmatrix}$$

and calculate the product:

$$\begin{pmatrix} 5 & 7 & 0 \\ 4 & 0 & 8 \end{pmatrix} \cdot \begin{pmatrix} 230 \\ 540 \\ 101 \end{pmatrix} = \begin{pmatrix} 5 \cdot 230 + 7 \cdot 540 + 0 \cdot 101 \\ 4 \cdot 230 + 0 \cdot 540 + 8 \cdot 101 \end{pmatrix} = \begin{pmatrix} 4930 \\ 1728 \end{pmatrix}$$

which means that customer A has spent €4930 and customer B has spent €1728.