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1 Matrices, Determinant and Rank

e most simple use of a matrix is to organise data. From this point of view a
matrix is nothing but a cabinet with drawers where we store information. How-
ever, in mathematics matrices are useful for many other reasons.

Even though in this chapter we will only study what a matrix is and the
main concepts related to it, the student will discover multiple applications of
matrices during the course of study. e most well known application is to
solve systems of linear equations. Other examples include linear program-
ming, solving of differential equations and the optimisation of functions of
several variables.

1.1. Matrix and Dimensions of a Matrix

Definition 1 (Matrix and dimensions). Amatrix is a set of numbers arranged
in rows and columns. e number of rows pmq and the number of columns
pnq constitute the dimensions of a matrix, which will be denoted by m ˆ n.

Usually an m ˆ n matrix is represented as follows:

A “

¨

˚

˚

˝

a11 a12 ¨ ¨ ¨ a1n
a21 a22 ¨ ¨ ¨ a2n
...

... . . . ...
am1 am2 ¨ ¨ ¨ amn

˛

‹

‹

‚

where aij stands for the element located at row “i” and column “j” of the matrix
A.

Example 1. e matrix A “

ˆ

6 3 4
8 2 5

˙

, that has two rows and three

columns, is said to be a 2 ˆ 3 matrix.
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12 MATHEMATICS FOR ECONOMICS AND BUSINESS

Example 2. A company has three production plants, p1, p2 and p3, and uses
raw materials from 10 different suppliers z1, z2, . . . , z10. Using a 3ˆ10 matrix
we can represent the quantities (described in thousands of kg, for instance)
that each production plant uses from every supplier. e result could be

z1
Ó

z2
Ó

z3
Ó

z4
Ó

z5
Ó

z6
Ó

z7
Ó

z8
Ó

z9
Ó

z10
Ó

A “

¨

˝

3 5 4 0 0 0 1 2 2 9
2 3 6 2 2 0 2 7 8 9
1 1 3 1 2 10 10 10 17 1

˛

‚

Ð p1
Ð p2
Ð p3

As an example, a23 “ 6, indicates that the production plant p2 has used
6000 kg from supplier z3.

Types of Matrices

By using the concept of dimension of a matrix, we can give a first classification
of matrices:

‚ A square matrix is a matrix with the same number of rows and columns,
that is, an nˆm matrix where m “ n. In a square matrix, we call the main
diagonal the set of elements a11, a22, . . . , ann.

‚ A diagonal matrix is a square matrix in which all the elements outside the
main diagonal are zero.

‚ A rectangular matrix is a matrix in which the number of rows is different
from the number of columns, that is, m ‰ n.

‚ A row vector is a 1 ˆ n matrix, that is, a matrix with a single row.
‚ A column vector is anmˆ1 matrix, that is, a matrix with a single column.

Example 3:

‚ e matrix

A “

ˆ

4 3
1 5

˙

is a 2 ˆ 2 square matrix. In general, an n ˆ n square matrix is said to be a
matrix of dimension n.
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MATRICES, DETERMINANT AND RANK 13

‚ Given the matrix

A “

¨

˝

3 3 5
1 0 2
3 1 8

˛

‚

its main diagonal consists of the elements a11, a22 and a33. Hence, the main
diagonal is t3, 0, 8u.

‚ e matrix A “

¨

˝

6 0 0
0 0 0
0 0 8

˛

‚is a diagonal matrix.

‚ e matrix A “

ˆ

2 3 4
5 2 1

˙

is a rectangular matrix whose dimensions

are 2 ˆ 3.

Exercises

1. Find the dimensions of the following matrices:

A “

ˆ

1 1 2 2
´2 1 3 1

˙

B “

ˆ

8 8
7 0

˙

C “
`

2 2 1
˘

Taking into account the dimensions, identify the type of each matrix.

2. Compute the value of x for which the matrixA “

¨

˝

x x ´ 1 0
0 3 0
0 0 5

˛

‚

is diagonal.

1.2. Operations with Matrices

1.2.1. Addition of Matrices

Definition 2 (Addition of matrices). Given two matrices of the same dimen-
sions, A and B, their sum is a new matrix of the same dimensions that is ob-
tained by adding the elements located at the same positions in the two matrices.
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14 MATHEMATICS FOR ECONOMICS AND BUSINESS

Properties of the addition of matrices

e addition of matrices of the same dimensions satisfies the following prop-
erties:

‚ Associativity: pA ` Bq ` C “ A ` pB ` Cq

‚ Commutativity: A ` B “ B ` A
‚ Existence of the identity element: A ` p0q “ A

e zero matrix p0q is the matrix of the same dimensions as A, in which
all the elements are 0.

‚ Every matrix A has a symmetric matrix: A ` p´Aq “ p0q

e symmetric matrix, p´Aq , is the matrix obtained by changing the
sign of every element in the matrix A.

Example 4. A paper factory manufactures two different types of paper, p1 and
p2, that are sold to three different communities, c1, c2, and c3. e quantities of
product that are sold weekly, in thousands of kg, can be represented by using
a 2 ˆ 3 matrix. Suppose that during the last two months the number of items
sold have been

c1
Ó

c2
Ó

c3
Ó

p1 Ñ

p2 Ñ

ˆ

2 5 0
3 1 2

˙

and

c1
Ó

c2
Ó

c3
Ó

p1 Ñ

p2 Ñ

ˆ

1 2 3
2 1 2

˙

In order to calculate the total sales in the last two months, we have to add
the matrices that indicate the monthly quantities. In this way, we obtain

ˆ

2 5 0
3 1 2

˙

`

ˆ

1 2 3
2 1 2

˙

“

ˆ

2 ` 1 5 ` 2 0 ` 3
3 ` 2 1 ` 1 2 ` 2

˙

at is, the number of items of each type that were sold in the last two
months are described using matrix notation by

c1
Ó

c2
Ó

c3
Ó

p1 Ñ

p2 Ñ

ˆ

3 7 3
5 2 4

˙
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MATRICES, DETERMINANT AND RANK 15

1.2.2. Subtraction of Matrices

Definition 3 (Subtraction of matrices). Given two matrices of the same di-
mensions, A and B, the subtraction A ´ B is defined based on the sum and
the concept of symmetric matrix introduced above. e subtraction A ´ B is
defined by

A ´ B “ A ` p´Bq

1.2.3. Scalar Multiplication of a Matrix

Definition 4 (Scalarmultiplication of amatrix). Given a real numberλ and
a matrix A, the multiplication λ ¨ A is a matrix of the same dimensions as A
that is obtained by multiplying each element of the matrix by the real number
λ.¹

Properties of the Scalar Multiplication of a Matrix
‚ Associativity: px ¨ yq ¨ A “ x ¨ py ¨ Aq

‚ Distributivity 1: px ` yq ¨ A “ x ¨ A ` y ¨ A

‚ Distributivity 2: x ¨ pA ` Bq “ x ¨ A ` x ¨ B

‚ Existence of the identity element: 1 ¨ A “ A

Example 5. A given distributor has demanded the prices for two different
models,m1 andm2, of high definition screens from a producer in the USA. e
price of each model depends on the quality of the finished goods and there are
three different qualities, q1, q2 and q3, for each of the two models. e dollar
prices have been presented in the following matrix:

q1
Ó

q2
Ó

q3
Ó

m1 Ñ

m2 Ñ

ˆ

1300 1200 1000
2500 2300 2200

˙

11 e term scalar denotes a real number.
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16 MATHEMATICS FOR ECONOMICS AND BUSINESS

In order to transform the prices to euros, we have to take into account the
exchange rate. Suppose for instance that e1 = $1.6, then the prices matrix in
the European currency would be

1
1.6

¨

ˆ

1300 1200 1000
2500 2300 2200

˙

“

¨

˝

1300
1.6

1200
1.6

1000
1.6

2500
1.6

2300
1.6

2200
1.6

˛

‚

By computing the fractions above, we obtain the desired result, expressed
in euros:

q1
Ó

q2
Ó

q3
Ó

m1 Ñ

m2 Ñ

ˆ

812.50 750.00 625.00
1562.50 1437.50 1375.00

˙

1.2.4. Matrix Product

Definition 5 (Product of a row vector and a column vector). Let

A “ pa1 . . . akq be a row vector and B “

¨

˝

b1
...
bk

˛

‚be a column vector. e

product A ¨ B is the real number that is obtained by multiplying the elements
at the same positions in each matrix, and then adding up the results of the
multiplication.

pa1 . . . akq ¨

¨

˝

b1
...
bk

˛

‚“ a1 ¨ b1 ` ¨ ¨ ¨ ` ak ¨ bk

Note that this product can only be made when the number of columns in
matrix A coincides with the number of rows in matrix B.

Definition 6 (Product of twomatrices). Given anmˆkmatrix, A, and a kˆn
matrix, B, the product A ¨ B is a new m ˆ n matrix where the element located
in row “i” and column “j” is computed by multiplying row “i” of matrix A by
column “j” of matrix B.

15424_Mathematics for economics and business, pàg. 16, 27/07/2015
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As we previously mentioned in the case of the product of a row vector and
a column vector, note that the number of columns in the first matrix and the
number of rows in the second one must coincide. Otherwise, it is not possible
to multiply the matrices. Observe also, that the resulting matrix will have as
many rows as the first matrix and as many columns as the second one.

A
mˆk

t

¨

“

B
k
u
ˆn

“ C
mˆn

Properties of the Product of Matrices

e product of matrices satisfies the following properties:

‚ Associativity: pA ¨ Bq ¨ C “ A ¨ pB ¨ Cq

‚ Distributivity: A ¨ pB ` Cq “ A ¨ B ` A ¨ C

‚ e set of square matrices of dimension n has an identity element with
respect to the product. is identity element is called the identity matrix
of dimension n and is denoted by In. It is a diagonal matrix where the
elements of the main diagonal are all equal to 1, that is

In “

¨

˚

˚

˝

1 0 ¨ ¨ ¨ 0
0 1 ¨ ¨ ¨ 0
...

... . . . ...
0 0 ¨ ¨ ¨ 1

˛

‹

‹

‚

and it holds that

A ¨ In “ A “ In ¨ A

‚ We should be aware that the product of matrices is in general not commu-
tative. In other words, the order of the factors may change the result of the
product.

Example 6. Given the matrices below

A “

ˆ

1 3
2 4

˙

B “

ˆ

0 ´1 3
3 2 5

˙

15424_Mathematics for economics and business, pàg. 17, 27/07/2015



18 MATHEMATICS FOR ECONOMICS AND BUSINESS

we wonder:

‚ If is it possible to calculate the products A ¨ B and B ¨ A?
‚ What is the result of each of these products, in case both operations can be

carried out?

A is a 2ˆ 2 matrix and B is a 2 ˆ3 matrix. erefore, it is possible to compute
the product A ¨ B

A
2ˆ2

t

¨

“

B
2
u
ˆ3

“ C
2ˆ3

but it is not possible to compute the product B ¨ A

B
2ˆ3

¨ A
2ˆ2

We compute A ¨ B

ˆ

1 3
2 4

˙

¨

ˆ

0 ´1 3
3 2 5

˙

“

ˆ

c11 c12 c13
c21 c22 c23

˙

where

c11 “
`

1 3
˘

¨

ˆ

0
3

˙

“ 1 ¨ 0 ` 3 ¨ 3 “ 9

c12 “
`

1 3
˘

¨

ˆ

´1
2

˙

“ 1 ¨ p´1q ` 3 ¨ 2 “ 5

c13 “
`

1 3
˘

¨

ˆ

3
5

˙

“ 1 ¨ 3 ` 3 ¨ 5 “ 18

c21 “
`

2 4
˘

¨

ˆ

0
3

˙

“ 2 ¨ 0 ` 4 ¨ 3 “ 12

c22 “
`

2 4
˘

¨

ˆ

´1
2

˙

“ 2 ¨ p´1q ` 4 ¨ 2 “ 6
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c23 “
`

2 4
˘

¨

ˆ

3
5

˙

“ 2 ¨ 3 ` 4 ¨ 5 “ 26

And we obtain C “

ˆ

9 5 18
12 6 26

˙

.

Example 7. Consider the following method to compute the expenses of the
purchases of several customers by using matrices. We build a matrix by writing
the amounts of each commodity bought by a certain customer row-wise, using
as many rows as customers. Next, we build a column vector that describes
the prices of each of the commodities we consider. e product of these two
matrices gives rise to a new column vector that depicts the total cost of the
commodities purchased by each customer.

To keep it simple, suppose that there are two customers, A and B, and three
commodities for sale, q1, q2 and q3. e order of the first customer consists of
5 items of product q1, 7 items of q2 and 0 items of q3. e second customer
purchases 4, 0, and 8 items of commodities q1, q2 and q3, respectively. If the
price of the commodity q1 is e230, the price of q2 is e540 and the price of q3
is e101, to find the expense of each customer we start by arranging the orders
in a matrix.

q1
Ó

q2
Ó

q3
Ó

customer A Ñ

customer B Ñ

ˆ

5 7 0
4 0 8

˙

Next, we build the price vector

¨

˝

230
540
101

˛

‚

and calculate the product:

ˆ

5 7 0
4 0 8

˙

¨

¨

˝

230
540
101

˛

‚“

ˆ

5 ¨ 230 ` 7 ¨ 540 ` 0 ¨ 101
4 ¨ 230 ` 0 ¨ 540 ` 8 ¨ 101

˙

“

ˆ

4930
1728

˙

which means that customer A has spent e4930 and customer B has spent
e1728.
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