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ABSTRACT

Let (€2, %) be a measurable space and m : ¥ — X be a vector measure with
values in the complex Banach space X. We apply the Calderén interpolation
methods to the family of spaces of scalar p—integrable functions with respect
tom with 1 < p < co. Moreover we obtain a result about the relation between
the complex interpolation spaces [Xo, X1]g) and [Xo, X1]”) for a Banach cou-
ple of interpolation (X, X7 ) such that X1 C X, with continuous inclusion.

1. Introduction

Let X be a Banach space and m : ¥ — X be a countably additive vector measure,
where Y is a o—algebra of subsets of some nonempty set 2. Associated with m are
the Banach lattices LP(m) (and L%, (m)), with 1 < p < oo, of equivalence classes of
functions f : Q@ — K (weakly) p-integrable with respect to m, equipped with the
topology of convergence in p—mean. Here K denotes the scalar field i.e., either the real
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project MTM2006-11690-C02 (M.E.C. Spain) and FEDER is gratefully acknowledged.
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242 FERNANDEZ, MAYORAL, NARANJO, AND SANCHEZ—PEREZ

numbers R or the complex numbers C over which X is a vector space. In the case
when K = R the spaces LP(m) and L%,(m) was intensively studied in [6].

We shall obtain the two Calderén’s complex interpolation spaces, [Xo, X1]jg and
[Xo, X1]1¥), with 0 < 8 < 1 (see [3, 2] or [12]) of the complex Banach lattices couple
(X0, X1), where Xy and X; are the spaces LP(m) or L, (m), with 1 < p < co. The
results we will obtain in this paper are quite different from those in the classical
setting of a positive scalar measure. As it is well-known, in the classical context
we have LP(m) = L,(m), and they are reflexive for 1 < p < oo. In general, for a
vector measure m, the inclusion LP(m) C L, (m) can be strict and these spaces can be
non-reflexive spaces, even for p > 1, and moreover L'(m) or L} (m) can be reflexive.

An important tool in our work is the relationship of the complex interpolation
spaces, namely, [Xo, X1]jg and [Xo, X1]1, with the so called Calderén-Lozanovskii’s
product space Xé_eXf , and also with the Gustavsson—Peetre’s interpolation space
(Xo, X1,6). The basic properties of these interpolation spaces can be found in [3, 9].

Roughly speaking, we can say that LP(m) is, in a certain sense, a good prototype of
[Xo, X1]g), and the same is true for Lf,(m) and [Xo, X1]. Based in this idea together
with the knowledge of the behavior of the relationships between the spaces LP(m) and
L%, (m), we obtain a general result about the relation between the complex interpolation
spaces [Xo, X1]jg) and [Xo, X1] for a Banach couple of interpolation (Xp, X1) such
that X| C Xy with continuous inclusion.

2. The spaces of p—integrable functions

Let X be a Banach space over K. The space of all continuous linear functionals
z* : X — K is denoted by X* and its unit ball by B;(X). Let m : ¥ — X be
a vector measure defined on a o—algebra of subsets ¥ of a nonempty set €2; this will
always mean that m is countably additive on . The semivariation of m over A € X
is [|ml[(A) := sup {|(m,z*)|(A) : 2* € B1(X™*)}, where [(m,z*)| is the total variation
measure of the scalar measure (m,z*) : ¥ — K defined by (m,z*)(A4) = (m(A4), z*),
for all A € 3. A measurable set A is said to be m-null when ||ml[(4) = 0. We as-
sume that the o—algebra ¥ is complete with respect to m, that is, if B C A € ¥ and
|lm|[(A) =0, then B € ¥ (and so ||m/||(B) = 0).

A measurable function f : 2 — K is called weakly integrable, with respect to m, if
f € LY(|{(m,z*)]) for every * € X*. The space L}, (m) of all (m-a.e. equivalence classes
of) weakly integrable functions becomes a complex Banach space when is endowed with
the norm defined by

11 5= suw{ [ 1fldltm.a")|:a” € BUXD} 1 € Lhm).

A weakly integrable function f is said to be integrable, with respect to m, if for

each A € ¥ there exists an element (necessarily unique) fdm € X satisfying
A

</ fdm,x*> = /fd(m,x*), for all * € X*. The space L'(m) of all (m-a.e.
A A

equivalence classes of) integrable functions becomes a closed subspace of Ll (m). Basic
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results about these spaces can be found in [6, 7, 11, 13, 14, 16]. If K = R then, with
the usual order, L. (m) is a Banach lattice with the Fatou property and L!(m) is an
order continuous closed ideal of L1 (m).

Suppose now that X is a Banach space over C. Let Xr denote X considered as a
vector space over R, in which case Xy is a real vector space. Note that the norm of X
is also a norm on Xg, and Xg becomes a Banach space with this norm. If 2* € (Xg)*,
then it is easily checked that zf : X — C defined by (z,2§) := (z,2*) — i(iz,z*) is
an element of X*. Moreover, if £* € X* and

.%'}L A X]R — <«T,-T;2> = Re(<$,x*>) € R?
ryw € Xp — (v, 27) = Im((z,27)) € R,

then both x7%, 27 € (Xg)* and (z,27) = —(iz,z}) for all z € X. Of course,
(5,27 = (@,25) +i(5,23), ©E€X.

Given a vector measure m : X — X, let mg : ¥ — X denote m considered as taking
its values in Xg. It is clear that mp is countably additive. Moreover, if z* € X*, then
we can write the complex measure (m, z*) = (mg, ) +i(mg, x7), where both (mg, z73;)
and (mp,z;) are R-valued signed measures.

Proposition 2.1

Let X be a complex Banach space, m : ¥ — X a vector measure and f : ) — C
a measurable function. Then

1) f € LL(m) if and only if both its real part and its imaginary part belong to
L (mg). That is, L} (m) = L. (mg) @ iLL (mg).

2) f € L'(m) if and only if both its real part and its imaginary part belong to
LY(mg). That is, L'(m) = L'(mg) @ iL'(mg).

Proof. See [7, Lemma 2 and Lemma 3]. O

Remark 2.2 If X is a complex Banach space and m : ¥ — X a vector measure, the
proposition above tells us that L. (m) and L'(m) are both compler Banach lattices.
Moreover it is clear from the definition that L!'(m) C L!(m) and, in general, this
inclusion is strict.

If 1 < p < oo, the space L%,(m) of (m-a.e. equivalence classes of) weakly p-
integrable functions with respect to m, is defined as the space of measurable functions
f:Q — K such that |f|P € L (m). When L%,(m) is endowed with the norm

£ i=sun { ([ 1P diimanl) "o e x| g e pom

becomes a Banach space. Analogously, the space LP(m) of (m—a.e. equivalence classes
of) p—integrable functions with respect to m, is defined as the space of measurable
functions f : @ — K such that |f[P € L'(m). For p = oo, the corresponding spaces
L3 (m) and L*°(m) of m—a.e. equivalence classes of m-essentially bounded functions
are equal and coincide, when endowed with the essential supremum norm, with the
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space L (u) of essentially bounded functions with respect to every Rybakov’s control
measure p of m.

Clearly LP(m) C L%,(m) and LP(m) is a closed subspace of L, (m). For K = R,
both spaces, with the usual order, become Banach lattices and LP(m) is an order
continuous ideal of Lf,(m) for 1 < p < oo. It is certainly true that many of the
facts available for LP(m) or L%, (m) over R as presented in [6], such as the usual limit
theorems, various lattice properties of LP(m) or L%, (m), the fact that all simple -
measurable functions are dense in LP(m), and so, carry over to the case C; see [7]
for example. In particular, if K = C, from the definition and Proposition 2.1 we
can check that LP(m) and L%, (m) are complex Banach lattices, that is, the equalities
LP(m) = LP(mg) @ iLP(mg) and L, (m) = L, (mg) @ iLY,(mg) hold for all 1 < p < cc.

For K = R parts 1)-3) of the following result can be found in [6] and for K = C
the result follows from the last comment.

Proposition 2.3

Let X be a Banach space over K, m : ¥ — X a vector measure and 1 < p < oc.

1) The dominated convergence theorem holds, meaning if ( f,,), is a sequence in LP(m)
converging m—a.e. to f : Q — K and |f,| < g, for n > 1 and some 0 < g €
LP(m), then f € LP(m) and f, — f in the norm of LP(m).

2) The Fatou property holds, meaning if (f,), is a sequence in L%,(m) converg-
ing m—a.e. to f : Q — K and sup ||f,||, < oo, then f € Li,(m) and | f|, <

n>1

sup,,>1 [ fnlp-
3) If1 < py < p1 < oo, then LY} (m) C LP°(m), and this inclusion is weakly compact.

Note that the Fatou property holds in L*°(m) = L3 (m). However, unless trivial
cases, we do not have a dominated convergence theorem in this space.

We end this section with the following important remark that we already men-
tioned in the introduction. In general the inclusion LP(m) C L%,(m) can be strict, and
in contrast to the classical setting of a positive scalar measure, these spaces can be
non-reflexive, even for p > 1, and moreover L!(m) or L (m) can be reflexive. See [6]
for details.

3. Complex interpolation of spaces of integrable functions

For a measure space (£2,%, 1), let L(u) the space of (u—a.e. equivalence classes of)
scalar measurable functions on Q. A Banach lattice ideal on the measure space (€2, %, (1)
is a Banach space X which is a vector subspace of L%(u) and satisfies: if f € X
and g € L%(u) such that |g(w)| < |f(w)|, p-a.e., then g € X and |g|| < ||f]|. Now
for a given vector measure m on a complex Banach space X, the spaces LP(m) and
L (m), with 1 < p < oo, are complex Banach lattice ideals on the measure space
(Q,%, u) where p is a Rybakov control measure for m, that is, u = [(m, z*)| for some
x* € B1(X™*), and m is absolutely continuous with respect to p. Therefore each pair
of spaces LP(m) or L%,(m), forms a compatible couple of Banach spaces since they are
imbedded continuously in the same topological vector space, namely, L°(u) endowed
with the topology of convergence in measure.
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Let X and Y be two Banach spaces such that X C Y. The Gagliardo completion
of X in Y is defined as the set X9Y of all those elements y € Y such that there exists
a bounded sequence (), in X which converges to y in Y. The space X 9Y is a Banach
space when it is endowed with the Gagliardo norm defined by

19l gov := inf sup {[[zn[[x : n € N},

where the infimum is taken over all bounded sequences (x,,), in X which converge to y
in Y. See [1, §10] or [12, I.1.2].

For an arbitrary interpolation couple of Banach spaces (X, X1) and 0 < 0 < 1,
from [2, Theorem 4.3.1] and the proof of [2, Lema 4.3.3, p. 94-95] it follows that

(0] ——  G(Xo+X1)
[X(),Xl][e] C [Xo,Xl] C [X07X1][9] s (31)

and both inclusions are continuous.

Proposition 3.1
Let 1 < p < oo and p* its conjugate exponent. Then

1) LP(m) - LP" (m) = LP(m) - Ly (m) = LY(m). Moreover, for every h € L'(m), we
have

Il = i {1l gl 2 = fg.f € LP(m),g € L (m) }

inf {||flly gl : h = fg. f € LP(m), g € L (m) }.

2) L& (m) - L% (m) = LL (m). Moreover, for every h € L. (m), we have
Il = in {1l gl : b = Fo. F € Li(m),g € L (m) .

3) For p > 1, the Gagliardo completion of LP(m) in L} (m) equals L}, (m) isomet-
rically. Therefore, for each 1 < pg < p1, the Gagliardo completion of LP*(m) in
LY (m) equals L} (m) isometrically.

4) L4 (m) is Gagliardo complete in L} (m), for p > 1. Therefore, L%} (m) is Gagliardo
complete in Lt (m), if 1 < py < py.

Proof. 1) From Proposition 2.3-3) we know that L} (m) C L'(m), since p* > 1. Note
that this inclusion is trivial if p* = oco. Then, for each g € LI (m) and each simple
function s, we have sg € L'(m). Now, let us consider the functions f € LP(m) and
g € LE(m) and take a sequence (s;), of simple functions which converges to f in
LP(m). Then, (8,9), converges to fg in norm in L} (m) since

1fg = snglly = [I(f = sn)glly < I1f = snll, 19l — 0

Therefore, fg € L'(m) because L!(m) is closed in L. (m). Moreover

1Fgllv = lim [[snglly < Tim [[sn[[pllgllpe = [/ ]Ipllgllp~-
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To end the proof of 1), note that each function h € L!(m) can be factorized as |h| =
|h|Y/?|n|'/P" | where |h|Y/P € LP(m) and |h|'/P" € LP"(m). With this factorization we
have [l = [l IR137" = 1Al A1 |-

2) Obvious.

3) Let (fn)n be a bounded sequence in LP(m) which converges to f in L. (m). For
each x* € X*, note that (f,), is a bounded sequence in LP(|(m, z*)|) which converges
to f in LY(|(m,2*)|). Applying Fatou’s Lemma to (|f,|”) we obtain that |f|" is in
LY(|{m,x*)|). Then f is in L}, (m). On the other hand, for a given f € L}, (m) let us
consider the sequence (f,), of bounded functions defined by f, := fxa,, with

A= {weQ:[fw)<n}, n=12...

Then, (fn)n is a bounded sequence in LP(m), since || full, < [|f[|, for every n > 1, and
(fn)n converges to f in L1 (m) as a consequence of the Holder inequality. Moreover
(|| fnllp)n converges to || f||,, and therefore the Gagliardo norm of f coincides with || f||,.
4) The same argument as in 3) works here. O

For a given couple (X, X1) of (complex) Banach lattice ideals on the same mea-
sure space (2,3, 1), and the index 0 < 6 < 1, the Calderén—Lozanovskii’s product
space XS_QX 19 is the space of all (u—a.e. equivalence classes of) complex valued mea-
surable functions f on (2,3, i) such that there exist fy € B1(Xy), f1 € Bi1(X1) and
A > 0 for which

[F(@)] < Afo@) 1 fiw)’, weQ (p—ae) (32)
The space Xéngle is a Banach space when endowed with the norm
”xHX(}*QX{’ ==1inf A,

where the infimum is taken over all A satisfying (3.2), see [12, IV.§1.11].
In the following we consider for 1 < py # p; < oo and 0 < 6 < 1 the index p(0)

defined by the equality

1 1-0 0
— + = 3.3
p(0) po M (3:3)

with the usual meaning if py or p; is equal to oco.

Proposition 3.2
The following identities hold isometrically.

1) (L7 (m)) = (L7 (m))? = LPO) (m) = (1P (m)) =0 (L5} (m))” .
2) (LB (m))" 7 (LB (m))’ = L& (m).

Proof. The proof follows directly from Proposition 3.1 and the definition of p(#) since
Po

(1—6)p(0)

is the conjugate exponent of PL_ O
Op(0)
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Now, we describe the Gustavsson—Peetre’s method [9]. For a given couple of Ba-
nach spaces (Xo, X7) and an index 0 < 6 < 1, the Gustavsson—Peetre space (X, X1, 0)
is the space of those elements x € Xg + X; for which there exists a double sequence
(71) ez of elements x;, € Xo N X7 such that:

(GP1) x = Z:rk, where the series converges in Xy + X7,
kEZ

1
(GP2a) the series Z ka is weakly unconditionally Cauchy in Xy, and
keZ

(GP2b) the series Z

kEZ
Recall that a series ), zj, in a Banach space Z is weakly unconditionally Cauchy

if for each z* € Z* the scalar series ), (z,2") is absolutely convergent. It is well
known that this is equivalent to the existence of a constant C' > 0 such that for every
finite subset F' C Z and every finite scalar sequence (ej),cp, with |e] < 1, we obtain

H Z ekzkH < C. (3.4)
keF

1
W.’Ek is weakly unconditionally Cauchy in Xj.

The Gustavsson—Peetre’s interpolation space (Xg, X1, 6), with the norm

2/l x0,x,,0y := inf C,

where the infimum is taken over all sequences (zy)kez verifying (GP1), (GP2a) and
(GP2b), and C > 0 verifying (3.4), is a Banach space [9].

The relation of the Gustavsson—Peetre’s interpolation space (Xg, X1,6) and the
Calderon’s interpolation space [Xo,Xl][g] for an arbitrary Banach couple (Xo, X1) is
given by the continuous inclusion (Xg, X1,6) C [Xo, X1]1”!. See [10, Theorem 5 and
Section 7].

In the case of spaces of p—integrable functions we have the following result. For
the proof we have adapted an argument used by Gagliardo in [8] (see also [15, Theo-
rem 3.1]).

Proposition 3.3
If1 SPO #pl < o0, then
L2 (m)  (LP(m), L' (m), 0),
and this inclusion is continuous.

Proof. Without loss of generality we can assume that 1 < pg < p; < oo. Then
po < p(0) < p1, and so

LPo(m) N LPY(m) = LP*(m) € LPY) (m) C LP°(m) + LP*(m) = LP°(m),

where equalities mean equality as vector spaces with equivalent norms.

—(1—=0)p _ —0po . Now define the
p1 —p(0) () —po

From (3.3) it is easy to verify that

___bpg _(-0)p;
constant ¢ :=2 p@-r0o =2 r1-20) < 1.
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For an arbitrary f € A (m) let us consider the countable partition {4y}, ., of
Q) given by the measurable sets

A = {we Q< |f(w)] < ckil},

and also consider the sequence (fy),c; of bounded functions defined by fi := fxa,.

We are going to check that f and the series Z fx verify the conditions on the definition

keZ
of the Gustavsson—Peetre space.

(GP1) First, let us note that f = Z fx pointwise and each of its partial sums is
keZ
pointwise bounded by |f| € 29 (m) C LP°(m). The dominated convergence theorem
in LP°(m) implies the convergence of Z fx to f in the norm of LP°(m).
kezZ

1
(GP2a) Let us verify that Z k0 fx is weakly unconditionally Cauchy in LP°(m).

keZ
More precisely, let us verify that for every finite set F' C Z and every finite scalar

sequence (ex),cp» With |ex] < 1, we have
H Z 2k9 fk

For every z* € B1(X™*) we have

LIS o aim el < 3 g [ ispaiim. o)

keF keF

1
— |FPDd|(m, 2*)]
l; 92képo Ck(P(o) P0) Ap

= FIPOd|(m, z*)| < fp(9)_
/ukepAk" [m, )| < (1712

0
"<l - (3.5)

IN

IN

Taking supremum when z* runs through B;(X™*) we obtain (3.5).
(GP2b) In a similar way we can prove that for every finite subset F' C Z and
every finite sequence (e)rer, with |ex| < 1, we have that, when p; < oo,

H;mnuzzézﬂ%ufugzz;. as
S

That is, the series Z fk is weakly unconditionally Cauchy in LP'(m). For
kEZ

p1 = oo we have that ¢ = 2= and

2k01

2| ! 1-6
|3 sl = g Vel < i =2 6)

Finally, from (3.5) and (3.6) (or (3.7)) it follows that || f||() < 2(1=0) " if Ifllpe) = 1,
and f € A (m). Therefore the inclusion
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L5® (m) C (L (m), L' (m), 6)
is continuous. 0
For the Calderén interpolation spaces we obtain the following result.

Theorem 3.4
Let 1 <pg# p1 < oo and 0 < 0 < 1. The following equalities hold isometrically.

1) [LPo(m), LY (m)]jq) = (LA (m), L (m)]q) = [LA (m), L (m)] g = LP) (m).
2) [LP(m), L ()] = [L29 (m), L2 (m)]* = (282 (m), L2} (m)] ™ = LE® (m).
Proof. Without loss of generality we can assume that 1 < py < p; < oo. Then,

po < p(f) < p1 and having in mind Proposition 2.3-3), the intersection L (m)NLE (m)
is, in any case, included in LP(*) (m), that is,

LPO(m) N L2 (m) = LP(m) € LP9) (m).

w

Moreover, clearly, we also have LE)(m) + L} (m) = LE (m).
1) Since LP°(m) N LP*(m) C [LP°(m), LP* (m)]g C [LEY (m), L (m)]jg and simple

functions are dense in LP()(m) it is enough to prove that
12 (m), L} (m)]gy € L) (m). (3.8)

Since the closure of Lt (m) in LE) (m) is LP°(m), by applying [2, Theorem 4.2.2(b)] we
have that
(L35 (m), L (m)] g = [LP°(m), L (m)] g -

But we know, from [3], that [LP°(m), LL) (m)]jg C (LP° (m))* =0 (L8 (m))e. Then inclu-
sion (3.8) follows from Proposition 3.2-1).
To end the proof of 1) note that the norms in the spaces

[LPO(m), L (m)]g) , [L4)) (m), LP* (m)]g and [LEP (m), LT} (m)] g

w

coincide since [, - ]jg is an exact interpolation functor (see [2, Theorem 4.1.2]). On the
other hand, the norms in the spaces [LP(m), L' (m)]}5 and LP®)(m) coincide because

LP)(m) has order continuous norm (see [3, 13.6.(ii)] or [12, Theorem IV.1.14]).
2) Note that it is enough to prove that

(L2 (m), L2 (m)] ) < L8O (m)) < [LPo (m), LP* (m)] )

The first inclusion is obtained as follows. We always have

— (LW (m)+LE} (m))
[L29(m), LE (m)]) < (L (m), LE (m)] :

(see (3.1)), but we know, from part 1), that [LE (m), L} (m)]jg = L) (m), and so

gLy (m)

(L2 (m), L2 (m)] ) < LPO) (m)
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Finally recall that we obtained in Proposition 2.3-3) that

gL (m)
L) (m) = LPO) ().

The second inclusion follows directly from Proposition 3.3 and [10, Theorem 5 and
Section 7].
The equality of the norms of the spaces

[0 m), 27 (m)) ), (259 (m), L2 (m)] ) and (L8 (m), L5} ()]

follows from the fact that [-, -]% is also an exact interpolation functor (see [2, The-
orem 4.1.4]). The equality of the norms of L (m) and [LE (m), LB} (m)]"® follows
from [3, 13.6.(ii)] having in mind that 9 (m) has the Fatou property. O

A basic tool in the proof of the theorem above is the fact that L} (m) is included
in LPo(m), when 1 < pg < p;. This inclusion can be interpreted as a particular case of a
more general result on the relationship between the two Calderén complex interpolation
methods that it is interesting by itself. We formulate this comment precisely in the
following theorem.
Theorem 3.5

Let (X0, X1) be a Banach couple such that X, is continuously included in Xy,
and let 0 < o < < 1. Then

[X(),Xl] C [Xg,Xl][ﬁ] C [X[]yXl][a}-
These inclusions are both continuous.

Proof. Since the inclusion of X7 into Xy is continuous, XoN.X; coincides isomorphically
with X7 and Xy + X; with Xo. The first inclusion is always true, see (3.1). To prove
the second inclusion recall that the following inclusions

[XO,XI]W] - [X07X1][a] - [XOaXl][O] C Xo,

are all continuous, and [X), Xl][o] is a closed subspace of Xg. Moreover, [|yl|(x,, Xily =
lyllx, for all y € [Xo, X1]j (see [2, Theorem 4.2.2(c)]). Now let us consider z €

P

gX
[Xo, X1]j5 * and a bounded sequence (zn)n in [Xo, X1];5 which converges to z in

the norm of Xo (and therefore in [Xo, X1]i). Put M := sup {Hxn”[XO,thm in > 1} .
We are going to prove that (z,,), is a Cauchy sequence in [Xg, X 1][04 . By applying the
Reiteration Theorem of [4] we can obtain [Xo, X1],) as

[X07X1][a] - [XO7X1][0] ’ [XO7X1][5]}

i’

with equality of norms, taking n := %. From [12, IV.§1.9] we get

]_7
ln = @kl g 120 = 20l

1—
2M)" ||zn — LE’““[X(?,Xl][O} )

IN

||CCn 7mk||[X0,X1][a] 18

IN



Complex interpolation and vector measures 251

for every n,k € N, and therefore (zy,), is a Cauchy sequence in [Xo, X1]

E Clearly
(n)n converges to x in [Xo, X1](,) and the inclusion

[a

—— GXo
[XO,Xl][m C [XO,Xl][a}

is proved. In order to show that this inclusion is continuous we can use similar argu-

—_~—

ments. Indeed, if the Gagliardo norm of = € [Xg, X1] 5 o equals 1, and € > 0 is given,
we can select a bounded sequence (2 )y in [Xo, X1]j5 such that ”an[XO’Xl][ﬂ] <1l+e,
for all n > 1. If we denote by C' > 0 the norm of the continuous inclusion [Xj, Xl][ﬂ] -
[X()aXl][o} s then

— 1 : 1-n 7
HxH[XO,Xl][Q] = hén Han[Xo,Xl}[a] < hmnsup Hx"H[Xo,Xﬂ[O} Han[XO’Xl][B]
1-n7; 1-n U] 1-n
< C hmnsup Hxn”[Xo,Xﬂ[m ||$nH[X0,X1][B] <C (1 + 5)’
and therefore |[z|x, x,), , < C7. O

l[a] —

Remark 3.6 1) Related to the theorem above, we would like to mention that, as far
as we know, it is not known in general, even for Banach lattices, whether the second
complex interpolation space [Xg, X 1][9] coincides with the Gagliardo completion of the
first one [Xo, Xl][g].

2) We would like to thank F. Cobos (Universidad Complutense de Madrid) for
pointing out another proof of the inclusion [ Xy, Xl][m C [Xo, Xl][a} yJJor0<a< <1,
when X7 is included continuously in Xg, by using certain relationships between the
complex interpolation methods with the real interpolation methods. Since |-, -][9} and
[, ~][9] are interpolation functors of exponent 0 < 6 < 1, by applying [2, Theorem 4.7.1]
and [5, Lemma 1.1] we have, for an arbitrary Banach couple (X, X1), the continuous
inclusions

(X0, X1)g1 C [Xo: X1ljg C (X0, X1)g oo »
(X0, X1)g C [Xo, X2 € (X0, X1)g o0 -

Now, if the inclusion X; C Xy is continuous, by applying [2, Theorem 3.4.1] we have
the continuous inclusion (X(),X1)91 an C (X[),Xl)@0 a0 for every 6y < 61 and every
1 < qo,q1 < 0. Therefore, we obtain the continuous inclusions

[Xo0, X1)! C (X0, X1) 3,00 € (X0, X1) 01  [X0, X))

forevery 0 < a < f < 1.
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