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00133 Roma, ITALY Austin, TX 78712, USA 69622 Villeurbanne cedex, FRANCE

Simon K. Donaldson Alexander Nagel Guido Weiss
Mathematics Department Department of Mathematics Department of Mathematics

Huxley Building, Imp. College University of Wisconsin Washington University

London, SW7 2BZ, UK Madison, WI 53705-1388, USA St. Louis, MO 63130, USA

Gerhard Frey Marta Sanz-Solé Efim Zelmanov
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Abstract

Let (Ω,Σ) be a measurable space and m : Σ → X be a vector measure with

values in the complex Banach space X. We apply the Calderón interpolation

methods to the family of spaces of scalar p−integrable functions with respect

to m with 1 ≤ p ≤ ∞. Moreover we obtain a result about the relation between

the complex interpolation spaces [X0, X1][θ] and [X0, X1]
[θ] for a Banach cou-

ple of interpolation (X0, X1) such that X1 ⊂ X0 with continuous inclusion.

1. Introduction

Let X be a Banach space and m : Σ −→ X be a countably additive vector measure,
where Σ is a σ–algebra of subsets of some nonempty set Ω. Associated with m are
the Banach lattices Lp(m) (and Lp

w(m)), with 1 ≤ p < ∞, of equivalence classes of
functions f : Ω −→ K (weakly) p–integrable with respect to m, equipped with the
topology of convergence in p–mean. Here K denotes the scalar field i.e., either the real

∗This research has been partially supported by La Junta de Andalucía. The support of D.G.I. under

project MTM2006–11690–C02 (M.E.C. Spain) and FEDER is gratefully acknowledged.
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numbers R or the complex numbers C over which X is a vector space. In the case
when K = R the spaces Lp(m) and Lp

w(m) was intensively studied in [6].

We shall obtain the two Calderón’s complex interpolation spaces, [X0, X1][θ] and

[X0, X1]
[θ], with 0 < θ < 1 (see [3, 2] or [12]) of the complex Banach lattices couple

(X0, X1) , where X0 and X1 are the spaces L
p(m) or Lp

w(m), with 1 ≤ p < ∞. The
results we will obtain in this paper are quite different from those in the classical
setting of a positive scalar measure. As it is well–known, in the classical context
we have Lp(m) = Lp

w(m), and they are reflexive for 1 < p < ∞. In general, for a
vector measure m, the inclusion Lp(m) ⊂ Lp

w(m) can be strict and these spaces can be
non–reflexive spaces, even for p > 1, and moreover L1(m) or L1

w(m) can be reflexive.

An important tool in our work is the relationship of the complex interpolation
spaces, namely, [X0, X1][θ] and [X0, X1]

[θ], with the so called Calderón–Lozanovskĭı ’s

product space X1−θ
0 Xθ

1 , and also with the Gustavsson–Peetre’s interpolation space
〈X0, X1, θ〉. The basic properties of these interpolation spaces can be found in [3, 9].

Roughly speaking, we can say that Lp(m) is, in a certain sense, a good prototype of
[X0, X1][θ], and the same is true for L

p
w(m) and [X0, X1]

[θ]. Based in this idea together
with the knowledge of the behavior of the relationships between the spaces Lp(m) and
Lp
w(m), we obtain a general result about the relation between the complex interpolation
spaces [X0, X1][θ] and [X0, X1]

[θ] for a Banach couple of interpolation (X0, X1) such
that X1 ⊂ X0 with continuous inclusion.

2. The spaces of p–integrable functions

Let X be a Banach space over K. The space of all continuous linear functionals
x∗ : X −→ K is denoted by X∗, and its unit ball by B1(X). Let m : Σ −→ X be
a vector measure defined on a σ–algebra of subsets Σ of a nonempty set Ω; this will
always mean that m is countably additive on Σ. The semivariation of m over A ∈ Σ
is ‖m‖(A) := sup {|〈m,x∗〉|(A) : x∗ ∈ B1(X

∗)} , where |〈m,x∗〉| is the total variation
measure of the scalar measure 〈m,x∗〉 : Σ −→ K defined by 〈m,x∗〉(A) = 〈m(A), x∗〉,
for all A ∈ Σ. A measurable set A is said to be m–null when ‖m‖(A) = 0. We as-
sume that the σ–algebra Σ is complete with respect to m, that is, if B ⊂ A ∈ Σ and
‖m‖(A) = 0, then B ∈ Σ (and so ‖m‖(B) = 0).

A measurable function f : Ω −→ K is called weakly integrable, with respect tom, if
f ∈ L1(|〈m,x∗〉|) for every x∗ ∈ X∗. The space L1

w(m) of all (m–a.e. equivalence classes
of) weakly integrable functions becomes a complex Banach space when is endowed with
the norm defined by

‖f‖1 := sup
{∫

Ω
|f | d|〈m,x∗〉| : x∗ ∈ B1(X

∗)
}
, f ∈ L1

w(m).

A weakly integrable function f is said to be integrable, with respect to m, if for

each A ∈ Σ there exists an element (necessarily unique)

∫
A
f dm ∈ X satisfying〈∫

A
f dm, x∗

〉
=

∫
A
f d〈m,x∗〉, for all x∗ ∈ X∗. The space L1(m) of all (m–a.e.

equivalence classes of) integrable functions becomes a closed subspace of L1
w(m). Basic
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results about these spaces can be found in [6, 7, 11, 13, 14, 16]. If K = R then, with
the usual order, L1

w(m) is a Banach lattice with the Fatou property and L1(m) is an
order continuous closed ideal of L1

w(m).
Suppose now that X is a Banach space over C. Let XR denote X considered as a

vector space over R, in which case XR is a real vector space. Note that the norm of X
is also a norm on XR, and XR becomes a Banach space with this norm. If x

∗ ∈ (XR)
∗,

then it is easily checked that x∗C : X −→ C defined by 〈x, x∗C〉 := 〈x, x∗〉 − i〈ix, x∗〉 is
an element of X∗. Moreover, if x∗ ∈ X∗ and

x∗R : x ∈ XR −→ 〈x, x∗R〉 := Re(〈x, x∗〉) ∈ R,

x∗I : x ∈ XR −→ 〈x, x∗I〉 := Im(〈x, x∗〉) ∈ R,

then both x∗R, x
∗
I ∈ (XR)

∗ and 〈x, x∗I〉 = −〈ix, x∗R〉 for all x ∈ X. Of course,

〈x, x∗〉 = 〈x, x∗R〉+ i〈x, x∗I〉, x ∈ X.

Given a vector measurem : Σ −→ X, letmR : Σ −→ XR denotem considered as taking
its values in XR. It is clear that mR is countably additive. Moreover, if x

∗ ∈ X∗, then
we can write the complex measure 〈m,x∗〉 = 〈mR, x

∗
R〉+i〈mR, x

∗
I〉, where both 〈mR, x

∗
R〉

and 〈mR, x
∗
I〉 are R–valued signed measures.

Proposition 2.1

Let X be a complex Banach space, m : Σ −→ X a vector measure and f : Ω −→ C

a measurable function. Then

1) f ∈ L1
w(m) if and only if both its real part and its imaginary part belong to

L1
w(mR). That is, L1

w(m) = L1
w(mR)⊕ iL1

w(mR).
2) f ∈ L1(m) if and only if both its real part and its imaginary part belong to

L1(mR). That is, L1(m) = L1(mR)⊕ iL1(mR).

Proof. See [7, Lemma 2 and Lemma 3].

Remark 2.2 If X is a complex Banach space and m : Σ −→ X a vector measure, the
proposition above tells us that L1

w(m) and L1(m) are both complex Banach lattices.
Moreover it is clear from the definition that L1(m) ⊂ L1

w(m) and, in general, this
inclusion is strict.

If 1 < p < ∞, the space Lp
w(m) of (m–a.e. equivalence classes of) weakly p–

integrable functions with respect to m, is defined as the space of measurable functions
f : Ω −→ K such that |f |p ∈ L1

w(m). When Lp
w(m) is endowed with the norm

‖f‖p := sup
{(∫

Ω
|f |p d|〈m,x∗〉|

)1/p
: x∗ ∈ B1(X

∗)
}
, f ∈ Lp

w(m)

becomes a Banach space. Analogously, the space Lp(m) of (m–a.e. equivalence classes
of) p–integrable functions with respect to m, is defined as the space of measurable
functions f : Ω −→ K such that |f |p ∈ L1(m). For p = ∞, the corresponding spaces
L∞w (m) and L∞(m) of m–a.e. equivalence classes of m–essentially bounded functions
are equal and coincide, when endowed with the essential supremum norm, with the
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space L∞(μ) of essentially bounded functions with respect to every Rybakov’s control
measure μ of m.

Clearly Lp(m) ⊂ Lp
w(m) and Lp(m) is a closed subspace of Lp

w(m). For K = R,
both spaces, with the usual order, become Banach lattices and Lp(m) is an order
continuous ideal of Lp

w(m) for 1 ≤ p < ∞. It is certainly true that many of the
facts available for Lp(m) or Lp

w(m) over R as presented in [6], such as the usual limit
theorems, various lattice properties of Lp(m) or Lp

w(m), the fact that all simple Σ–
measurable functions are dense in Lp(m), and so, carry over to the case C; see [7]
for example. In particular, if K = C, from the definition and Proposition 2.1 we
can check that Lp(m) and Lp

w(m) are complex Banach lattices, that is, the equalities
Lp(m) = Lp(mR)⊕ iLp(mR) and Lp

w(m) = Lp
w(mR)⊕ iLp

w(mR) hold for all 1 ≤ p ≤ ∞.

For K = R parts 1)–3) of the following result can be found in [6] and for K = C

the result follows from the last comment.

Proposition 2.3

Let X be a Banach space over K, m : Σ −→ X a vector measure and 1 ≤ p <∞.

1) The dominated convergence theorem holds, meaning if (fn)n is a sequence in Lp(m)
converging m–a.e. to f : Ω −→ K and |fn| ≤ g, for n ≥ 1 and some 0 ≤ g ∈
Lp(m), then f ∈ Lp(m) and fn → f in the norm of Lp(m).

2) The Fatou property holds, meaning if (fn)n is a sequence in Lp
w(m) converg-

ing m–a.e. to f : Ω −→ K and sup
n≥1

‖fn‖p < ∞, then f ∈ Lp
w(m) and ‖f‖p ≤

supn≥1 ‖fn‖p.
3) If 1 ≤ p0 < p1 <∞, then Lp1

w (m) ⊂ Lp0(m), and this inclusion is weakly compact.

Note that the Fatou property holds in L∞(m) ≡ L∞w (m). However, unless trivial
cases, we do not have a dominated convergence theorem in this space.

We end this section with the following important remark that we already men-
tioned in the introduction. In general the inclusion Lp(m) ⊂ Lp

w(m) can be strict, and
in contrast to the classical setting of a positive scalar measure, these spaces can be
non–reflexive, even for p > 1, and moreover L1(m) or L1

w(m) can be reflexive. See [6]
for details.

3. Complex interpolation of spaces of integrable functions

For a measure space (Ω,Σ, μ), let L0(μ) the space of (μ–a.e. equivalence classes of)
scalar measurable functions on Ω. A Banach lattice ideal on the measure space (Ω,Σ, μ)
is a Banach space X which is a vector subspace of L0(μ) and satisfies: if f ∈ X
and g ∈ L0(μ) such that |g(ω)| ≤ |f(ω)|, μ–a.e., then g ∈ X and ‖g‖ ≤ ‖f‖. Now
for a given vector measure m on a complex Banach space X, the spaces Lp(m) and
Lp
w(m), with 1 ≤ p < ∞, are complex Banach lattice ideals on the measure space
(Ω,Σ, μ) where μ is a Rybakov control measure for m, that is, μ = |〈m,x∗〉| for some
x∗ ∈ B1(X

∗), and m is absolutely continuous with respect to μ. Therefore each pair
of spaces Lp(m) or Lp

w(m), forms a compatible couple of Banach spaces since they are
imbedded continuously in the same topological vector space, namely, L0(μ) endowed
with the topology of convergence in measure.
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Let X and Y be two Banach spaces such that X ⊂ Y. The Gagliardo completion
of X in Y is defined as the set X̃GY of all those elements y ∈ Y such that there exists
a bounded sequence (xn)n in X which converges to y in Y. The space X̃GY is a Banach
space when it is endowed with the Gagliardo norm defined by

‖y‖
˜XGY := inf sup {‖xn‖X : n ∈ N} ,

where the infimum is taken over all bounded sequences (xn)n in X which converge to y
in Y. See [1, §10] or [12, I.1.2].

For an arbitrary interpolation couple of Banach spaces (X0, X1) and 0 < θ < 1,
from [2, Theorem 4.3.1] and the proof of [2, Lema 4.3.3, p. 94–95] it follows that

[X0, X1][θ] ⊂ [X0, X1]
[θ] ⊂ ˜[X0, X1][θ]

G(X0+X1)
, (3.1)

and both inclusions are continuous.

Proposition 3.1

Let 1 ≤ p <∞ and p∗ its conjugate exponent. Then

1) Lp(m) · Lp∗(m) = Lp(m) · Lp∗
w (m) = L1(m). Moreover, for every h ∈ L1(m), we

have

‖h‖1 = inf
{
‖f‖p ‖g‖p∗ : h = fg, f ∈ Lp(m), g ∈ Lp∗(m)

}
= inf

{
‖f‖p ‖g‖p∗ : h = fg, f ∈ Lp(m), g ∈ Lp∗

w (m)
}
.

2) Lp
w(m) · Lp∗

w (m) = L1
w(m). Moreover, for every h ∈ L1

w(m), we have

‖h‖1 = inf
{
‖f‖p ‖g‖p∗ : h = fg, f ∈ Lp

w(m), g ∈ Lp∗
w (m)

}
.

3) For p > 1, the Gagliardo completion of Lp(m) in L1
w(m) equals Lp

w(m) isomet-
rically. Therefore, for each 1 ≤ p0 < p1, the Gagliardo completion of Lp1(m) in
Lp0
w (m) equals Lp1

w (m) isometrically.

4) Lp
w(m) is Gagliardo complete in L1

w(m), for p > 1. Therefore, Lp1
w (m) is Gagliardo

complete in Lp0
w (m), if 1 ≤ p0 < p1.

Proof. 1) From Proposition 2.3–3) we know that Lp∗
w (m) ⊂ L1(m), since p∗ > 1. Note

that this inclusion is trivial if p∗ = ∞. Then, for each g ∈ Lp∗
w (m) and each simple

function s, we have sg ∈ L1(m). Now, let us consider the functions f ∈ Lp(m) and
g ∈ Lp∗

w (m) and take a sequence (sn)n of simple functions which converges to f in
Lp(m). Then, (sng)n converges to fg in norm in L1

w(m) since

‖fg − sng‖1 = ‖(f − sn)g‖1 ≤ ‖f − sn‖p ‖g‖p∗ −→ 0.

Therefore, fg ∈ L1(m) because L1(m) is closed in L1
w(m). Moreover

‖fg‖1 = lim
n
‖sng‖1 ≤ lim

n
‖sn‖p‖g‖p∗ = ‖f‖p‖g‖p∗ .
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To end the proof of 1), note that each function h ∈ L1(m) can be factorized as |h| =
|h|1/p|h|1/p∗ , where |h|1/p ∈ Lp(m) and |h|1/p∗ ∈ Lp∗(m). With this factorization we

have ‖h‖1 = ‖h‖1/p1 ‖h‖1/p
∗

1 = ‖|h|1/p‖p‖|h|1/p
∗‖p∗ .

2) Obvious.

3) Let (fn)n be a bounded sequence in Lp(m) which converges to f in L1
w(m). For

each x∗ ∈ X∗, note that (fn)n is a bounded sequence in Lp(|〈m,x∗〉|) which converges
to f in L1(|〈m,x∗〉|). Applying Fatou’s Lemma to (|fn|p) we obtain that |f |p is in
L1(|〈m,x∗〉|). Then f is in Lp

w(m). On the other hand, for a given f ∈ Lp
w(m) let us

consider the sequence (fn)n of bounded functions defined by fn := fχAn , with

An := {w ∈ Ω : |f(ω)| ≤ n} , n = 1, 2, . . .

Then, (fn)n is a bounded sequence in Lp(m), since ‖fn‖p ≤ ‖f‖p for every n ≥ 1, and
(fn)n converges to f in L1

w(m) as a consequence of the Hölder inequality. Moreover
(‖fn‖p)n converges to ‖f‖p, and therefore the Gagliardo norm of f coincides with ‖f‖p.
4) The same argument as in 3) works here.

For a given couple (X0, X1) of (complex) Banach lattice ideals on the same mea-
sure space (Ω,Σ, μ), and the index 0 ≤ θ ≤ 1, the Calderón–Lozanovskĭı ’s product
space X1−θ

0 Xθ
1 is the space of all (μ–a.e. equivalence classes of) complex valued mea-

surable functions f on (Ω,Σ, μ) such that there exist f0 ∈ B1(X0), f1 ∈ B1(X1) and
λ > 0 for which

|f(ω)| ≤ λ|f0(ω)|1−θ|f1(ω)|θ, w ∈ Ω (μ− a.e.) (3.2)

The space X1−θ
0 Xθ

1 is a Banach space when endowed with the norm

‖x‖X1−θ
0 Xθ

1
:= inf λ,

where the infimum is taken over all λ satisfying (3.2), see [12, IV.§1.11].
In the following we consider for 1 ≤ p0 �= p1 ≤ ∞ and 0 < θ < 1 the index p(θ)

defined by the equality
1

p(θ)
=
1− θ

p0
+

θ

p1
(3.3)

with the usual meaning if p0 or p1 is equal to ∞.

Proposition 3.2

The following identities hold isometrically.

1) (Lp0(m))1−θ (Lp1(m))θ = Lp(θ)(m) = (Lp0(m))1−θ (Lp1
w (m))

θ
.

2) (Lp0
w (m))

1−θ
(Lp1

w (m))
θ
= L

p(θ)
w (m).

Proof. The proof follows directly from Proposition 3.1 and the definition of p(θ) since
p0

(1− θ)p(θ)
is the conjugate exponent of

p1
θp(θ)

.



Complex interpolation and vector measures 247

Now, we describe the Gustavsson–Peetre’s method [9]. For a given couple of Ba-
nach spaces (X0, X1) and an index 0 < θ < 1, the Gustavsson–Peetre space 〈X0, X1, θ〉
is the space of those elements x ∈ X0 + X1 for which there exists a double sequence
(xk)k∈Z of elements xk ∈ X0 ∩X1 such that:

(GP1) x =
∑
k∈Z

xk, where the series converges in X0 +X1,

(GP2a) the series
∑
k∈Z

1

2kθ
xk is weakly unconditionally Cauchy in X0, and

(GP2b) the series
∑
k∈Z

1

2k(θ−1)
xk is weakly unconditionally Cauchy in X1.

Recall that a series
∑

k zk in a Banach space Z is weakly unconditionally Cauchy
if for each z∗ ∈ Z∗ the scalar series

∑
k〈zk, z∗〉 is absolutely convergent. It is well

known that this is equivalent to the existence of a constant C > 0 such that for every
finite subset F ⊂ Z and every finite scalar sequence (εk)k∈F , with |εk| ≤ 1, we obtain∥∥∥∑

k∈F
εkzk

∥∥∥ ≤ C. (3.4)

The Gustavsson–Peetre’s interpolation space 〈X0, X1, θ〉, with the norm

‖x‖〈X0,X1,θ〉 := inf C,

where the infimum is taken over all sequences (xk)k∈Z verifying (GP1), (GP2a) and
(GP2b), and C > 0 verifying (3.4), is a Banach space [9].

The relation of the Gustavsson–Peetre’s interpolation space 〈X0, X1, θ〉 and the
Calderon’s interpolation space [X0, X1]

[θ] for an arbitrary Banach couple (X0, X1) is
given by the continuous inclusion 〈X0, X1, θ〉 ⊂ [X0, X1]

[θ]. See [10, Theorem 5 and
Section 7].

In the case of spaces of p–integrable functions we have the following result. For
the proof we have adapted an argument used by Gagliardo in [8] (see also [15, Theo-
rem 3.1]).

Proposition 3.3

If 1 ≤ p0 �= p1 ≤ ∞, then

Lp(θ)
w (m) ⊂ 〈Lp0(m), Lp1(m), θ〉,

and this inclusion is continuous.

Proof. Without loss of generality we can assume that 1 ≤ p0 < p1 ≤ ∞. Then
p0 < p(θ) < p1, and so

Lp0(m) ∩ Lp1(m) = Lp1(m) ⊂ Lp(θ)
w (m) ⊂ Lp0(m) + Lp1(m) = Lp0(m),

where equalities mean equality as vector spaces with equivalent norms.

From (3.3) it is easy to verify that
−(1− θ)p1
p1 − p(θ)

=
−θp0

p(θ)− p0
. Now define the

constant c := 2
− θp0

p(θ)−p0 = 2
− (1−θ)p1

p1−p(θ) < 1.
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For an arbitrary f ∈ L
p(θ)
w (m) let us consider the countable partition {Ak}k∈Z of

Ω given by the measurable sets

Ak :=
{
ω ∈ Ω : ck ≤ |f(ω)| < ck−1

}
,

and also consider the sequence (fk)k∈Z of bounded functions defined by fk := fχAk
.

We are going to check that f and the series
∑
k∈Z

fk verify the conditions on the definition

of the Gustavsson–Peetre space.

(GP1) First, let us note that f =
∑
k∈Z

fk pointwise and each of its partial sums is

pointwise bounded by |f | ∈ L
p(θ)
w (m) ⊂ Lp0(m). The dominated convergence theorem

in Lp0(m) implies the convergence of
∑
k∈Z

fk to f in the norm of Lp0(m).

(GP2a) Let us verify that
∑
k∈Z

1

2kθ
fk is weakly unconditionally Cauchy in Lp0(m).

More precisely, let us verify that for every finite set F ⊂ Z and every finite scalar
sequence (εk)k∈F , with |εk| ≤ 1, we have∥∥∥∑

k∈F

εk
2kθ

fk

∥∥∥p0
p0
≤ ‖f‖p(θ)p(θ) . (3.5)

For every x∗ ∈ B1(X
∗) we have∫

Ω

∣∣∣∑
k∈F

εk
2kθ

fk

∣∣∣p0d|〈m,x∗〉| ≤
∑
k∈F

1

2kθp0

∫
Ak

|f |p0d|〈m,x∗〉|

≤
∑
k∈F

1

2kθp0
1

ck(p(θ)−p0)

∫
Ak

|f |p(θ)d|〈m,x∗〉|

=

∫
∪k∈FAk

|f |p(θ)d|〈m,x∗〉| ≤ ‖f‖p(θ)p(θ).

Taking supremum when x∗ runs through B1(X
∗) we obtain (3.5).

(GP2b) In a similar way we can prove that for every finite subset F ⊂ Z and
every finite sequence (εk)k∈F , with |εk| ≤ 1, we have that, when p1 <∞,∥∥∥∑

k∈F

εk
2k(θ−1)

fk

∥∥∥p1
p1
≤ 2(1−θ)p1‖f‖p(θ)p(θ). (3.6)

That is, the series
∑
k∈Z

1

2k(θ−1)
fk is weakly unconditionally Cauchy in Lp1(m). For

p1 =∞ we have that c = 2−(1−θ) and∥∥∥∑
k∈F

εk
2k(θ−1)

fk

∥∥∥
∞
= max

k∈F
|εk|
2k(θ−1)

‖fk‖∞ ≤ max
k∈F

ck−1

2k(θ−1)
= 21−θ. (3.7)

Finally, from (3.5) and (3.6) (or (3.7)) it follows that ‖f‖〈θ〉 ≤ 2(1−θ), if ‖f‖p(θ) = 1,
and f ∈ L

p(θ)
w (m). Therefore the inclusion
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Lp(θ)
w (m) ⊂ 〈Lp0(m), Lp1(m), θ〉

is continuous.

For the Calderón interpolation spaces we obtain the following result.

Theorem 3.4

Let 1 ≤ p0 �= p1 ≤ ∞ and 0 < θ < 1. The following equalities hold isometrically.

1) [Lp0(m), Lp1(m)][θ] = [L
p0
w (m), Lp1(m)][θ] = [L

p0
w (m), L

p1
w (m)][θ] = Lp(θ)(m).

2) [Lp0(m), Lp1(m)][θ] = [Lp0
w (m), Lp1(m)]

[θ]
= [Lp0

w (m), L
p1
w (m)]

[θ]
= L

p(θ)
w (m).

Proof. Without loss of generality we can assume that 1 ≤ p0 < p1 ≤ ∞. Then,
p0 < p(θ) < p1 and having in mind Proposition 2.3–3), the intersection L

p0
w (m)∩Lp1

w (m)
is, in any case, included in Lp(θ)(m), that is,

Lp0
w (m) ∩ Lp1

w (m) = Lp1
w (m) ⊂ Lp(θ)(m).

Moreover, clearly, we also have Lp0
w (m) + Lp1

w (m) = Lp0
w (m).

1) Since Lp0(m) ∩ Lp1(m) ⊂ [Lp0(m), Lp1(m)][θ] ⊂ [L
p0
w (m), L

p1
w (m)][θ] and simple

functions are dense in Lp(θ)(m) it is enough to prove that

[Lp0
w (m), L

p1
w (m)][θ] ⊂ Lp(θ)(m). (3.8)

Since the closure of Lp1
w (m) in Lp0

w (m) is Lp0(m), by applying [2, Theorem 4.2.2(b)] we
have that

[Lp0
w (m), L

p1
w (m)][θ] = [L

p0(m), Lp1
w (m)][θ] .

But we know, from [3], that [Lp0(m), Lp1
w (m)][θ] ⊂ (Lp0(m))1−θ (Lp1

w (m))
θ
. Then inclu-

sion (3.8) follows from Proposition 3.2–1).
To end the proof of 1) note that the norms in the spaces

[Lp0(m), Lp1(m)][θ] , [L
p0
w (m), L

p1(m)][θ] and [L
p0
w (m), L

p1
w (m)][θ]

coincide since [ · , · ][θ] is an exact interpolation functor (see [2, Theorem 4.1.2]). On the
other hand, the norms in the spaces [Lp0(m), Lp1(m)][θ] and Lp(θ)(m) coincide because

Lp(θ)(m) has order continuous norm (see [3, 13.6.(ii)] or [12, Theorem IV.1.14]).
2) Note that it is enough to prove that

[Lp0
w (m), L

p1
w (m)]

[θ] ⊂ Lp(θ)
w (m) ⊂ [Lp0(m), Lp1(m)][θ] .

The first inclusion is obtained as follows. We always have

[Lp0
w (m), L

p1
w (m)]

[θ] ⊂ ˜[Lp0
w (m), L

p1
w (m)][θ]

G(Lp0
w (m)+L

p1
w (m))

,

(see (3.1)), but we know, from part 1), that [Lp0
w (m), L

p1
w (m)][θ] = Lp(θ)(m), and so

[Lp0
w (m), L

p1
w (m)]

[θ] ⊂ ˜Lp(θ)(m)
GLp0

w (m)

.
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Finally recall that we obtained in Proposition 2.3–3) that

˜Lp(θ)(m)
GLp0

w (m)

= Lp(θ)
w (m).

The second inclusion follows directly from Proposition 3.3 and [10, Theorem 5 and
Section 7].

The equality of the norms of the spaces

[Lp0(m), Lp1(m)][θ] , [Lp0
w (m), L

p1(m)][θ] and [Lp0
w (m), L

p1
w (m)]

[θ]

follows from the fact that [ · , · ][θ] is also an exact interpolation functor (see [2, The-
orem 4.1.4]). The equality of the norms of L

p(θ)
w (m) and [Lp0

w (m), L
p1
w (m)]

[θ]
follows

from [3, 13.6.(ii)] having in mind that L
p(θ)
w (m) has the Fatou property.

A basic tool in the proof of the theorem above is the fact that Lp1
w (m) is included

in Lp0(m), when 1 ≤ p0 < p1. This inclusion can be interpreted as a particular case of a
more general result on the relationship between the two Calderón complex interpolation
methods that it is interesting by itself. We formulate this comment precisely in the
following theorem.

Theorem 3.5

Let (X0, X1) be a Banach couple such that X1 is continuously included in X0,
and let 0 ≤ α < β < 1. Then

[X0, X1]
[β] ⊂ ˜[X0, X1][β]

GX0

⊂ [X0, X1][α] .

These inclusions are both continuous.

Proof. Since the inclusion ofX1 intoX0 is continuous, X0∩X1 coincides isomorphically
with X1 and X0 +X1 with X0. The first inclusion is always true, see (3.1). To prove
the second inclusion recall that the following inclusions

[X0, X1][β] ⊂ [X0, X1][α] ⊂ [X0, X1][0] ⊂ X0,

are all continuous, and [X0, X1][0] is a closed subspace of X0. Moreover, ‖y‖[X0,X1][0]
=

‖y‖X0 for all y ∈ [X0, X1][0] (see [2, Theorem 4.2.2(c)]). Now let us consider x ∈
˜[X0, X1][β]

GX0

and a bounded sequence (xn)n in [X0, X1][β] which converges to x in

the norm of X0 (and therefore in [X0, X1][0]). Put M := sup
{
‖xn‖[X0,X1][β]

: n ≥ 1
}
.

We are going to prove that (xn)n is a Cauchy sequence in [X0, X1][α] . By applying the
Reiteration Theorem of [4] we can obtain [X0, X1][α] as

[X0, X1][α] =
[
[X0, X1][0] , [X0, X1][β]

]
[η]

,

with equality of norms, taking η :=
α

β
. From [12, IV.§1.9] we get

‖xn − xk‖[X0,X1][α]
≤ ‖xn − xk‖1−η[X0,X1][0]

‖xn − xk‖η[X0,X1][β]

≤ (2M)η ‖xn − xk‖1−η[X0,X1][0]
,
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for every n, k ∈ N, and therefore (xn)n is a Cauchy sequence in [X0, X1][α] . Clearly
(xn)n converges to x in [X0, X1][α] and the inclusion

˜[X0, X1][β]
GX0

⊂ [X0, X1][α]

is proved. In order to show that this inclusion is continuous we can use similar argu-

ments. Indeed, if the Gagliardo norm of x ∈ ˜[X0, X1][β]
GX0

equals 1, and ε > 0 is given,
we can select a bounded sequence (xn)n in [X0, X1][β] such that ‖xn‖[X0,X1][β]

≤ 1+ ε,

for all n ≥ 1. If we denote by C > 0 the norm of the continuous inclusion [X0, X1][β] ⊂
[X0, X1][0] , then

‖x‖[X0,X1][α]
= lim

n
‖xn‖[X0,X1][α]

≤ lim sup
n

‖xn‖1−η[X0,X1][0]
‖xn‖η[X0,X1][β]

≤ C1−η lim sup
n

‖xn‖1−η[X0,X1][β]
‖xn‖η[X0,X1][β]

≤ C1−η(1 + ε),

and therefore ‖x‖[X0,X1][α]
≤ C1−η.

Remark 3.6 1) Related to the theorem above, we would like to mention that, as far
as we know, it is not known in general, even for Banach lattices, whether the second
complex interpolation space [X0, X1]

[θ] coincides with the Gagliardo completion of the
first one [X0, X1][θ].

2) We would like to thank F. Cobos (Universidad Complutense de Madrid) for

pointing out another proof of the inclusion [X0, X1]
[β] ⊂ [X0, X1][α] , for 0 < α < β < 1,

when X1 is included continuously in X0, by using certain relationships between the
complex interpolation methods with the real interpolation methods. Since [ · , · ][θ] and
[ · , · ][θ] are interpolation functors of exponent 0 < θ < 1, by applying [2, Theorem 4.7.1]
and [5, Lemma 1.1] we have, for an arbitrary Banach couple (X0, X1), the continuous
inclusions

(X0, X1)θ,1 ⊂ [X0, X1][θ] ⊂ (X0, X1)θ,∞ ,

(X0, X1)θ,1 ⊂ [X0, X1]
[θ] ⊂ (X0, X1)θ,∞ .

Now, if the inclusion X1 ⊂ X0 is continuous, by applying [2, Theorem 3.4.1] we have
the continuous inclusion (X0, X1)θ1,q1 ⊂ (X0, X1)θ0,q0 , for every θ0 < θ1 and every
1 ≤ q0, q1 ≤ ∞. Therefore, we obtain the continuous inclusions

[X0, X1]
[β] ⊂ (X0, X1)β,∞ ⊂ (X0, X1)α,1 ⊂ [X0, X1][α],

for every 0 < α < β < 1.
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Imprimeix: Gráficas Rey, S.L.

imac8
Nota adhesiva
Marked definida por imac8

imac8
Nota adhesiva
Marked definida por imac8

imac8
Nota adhesiva
Marked definida por imac8

imac8
Nota adhesiva
Marked definida por imac8

imac8
Nota adhesiva
Marked definida por imac8

imac8
Nota adhesiva
Marked definida por imac8




