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ABSTRACT

We focus on the rational cohomology of Cornalba’s moduli space of spin curves
of genus 1 with n marked points. In particular, we show that both its first and its
third cohomology group vanish and the second cohomology group is generated
by boundary classes.

1. Introduction

The moduli space of spin curves S, was constructed by Cornalba in [6] in order
to compactify the moduli space of pairs {smooth genus g complex curve C, theta-
characteristic on C'}. Cornalba’s compactification turns out to be a normal projective

variety equipped with a finite morphism:

X 8y — M,

onto the Deligne-Mumford moduli space of stable curves of genus g (see [6, Proposi-
tion (5.2)]). The geometry of S, (in particular, its Picard group) was investigated by
Cornalba himself in [6, 7]; here instead we begin the study of the rational cohomology

of gg.

Keywords: pointed spin curves, stable elliptic curves, rational cohomology, inductive method.
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242 BINI AND FONTANARI

As shown by Arbarello and Cornalba in [3], the rational cohomology of M, van-
ishes in low odd degree, so it seems reasonable to expect that the same holds also
for S,; however, a priori it is not clear at all that the morphism y does not increase
cohomology. The inductive method of [3] provides indeed an effective tool to check
our guess, but the set up of the induction requires to work with moduli of pointed spin
curves. Namely, for all integers g, n such that 2g — 2 +n > 0, we consider the moduli
spaces

Sgn ={l(C,p1,....pn; ;)] : (C.p1,...,py) is a genus g quasi-stable projective
curve with n marked points; ¢ is a line bundle of degree g — 1 on C having degree 1
on every exceptional component of C, and « : (¥? — we is a homomorphism which
is not zero at a general point of every non-exceptional component of C'}.

In order to put an analytic structure on Sy ,,, we can easily adapt Cornalba’s con-
struction in [6]: from the universal deformation of the stable model of (C,p,...,pn)
we obtain exactly as in [6, § 4], a universal deformation Uy — By of X =
(C,p1,...,pn;C; a); next, we transplant on S, the structure of By /Aut(X) follow-
ing [6, § 5]. Alternatively, we can regard S, as the coarse moduli space associated in
the easiest case r = 2 to the stack of r-spin curves constructed by Jarvis in [10] and
revisited by Abramovich and Jarvis in [1].

We recall that gg,n is the union of two connected components, ?;n and g;n,
which correspond to even and odd theta-characteristics, respectively. The main result
of the present paper, which completes the research project started in [4] and continued
in [5], is the following:

Theorem 1
For every n,
H'(S1,,,Q) = H*(51,,,Q) =0,
and H? (gin, Q) is generated by boundary classes.

We note that a similar statement holds true for the moduli space of odd theta-
characteristics (see [8]) since Sy, = M.

In what follows, we work over the field C of complex numbers; all cohomology
groups are implicitly assumed to have rational coefficients.

2. The inductive approach

As pointed out in the Introduction, we are going to apply the inductive strategy
developed by Arbarello and Cornalba in [3] for the moduli space of curves. Namely,
we consider the long exact sequence of cohomology with compact supports:

.= H(lf(Sl,n) — Hk(gl’n) — Hk(ﬁSLn) — ... (1)

Hence, whenever H¥(S1 ,,) = 0, there is an injection H*(S1,,) — H*(9S1.,). Moreover,
from [6, § 3], it follows that each irreducible component of the boundary of St ,, is the
image of a morphism:

i s X — Sl,n
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where either
Xi = Most1 X S1441

where s+t =n; or
Xi == M07n+2 .

Finally, exactly as in [3, Lemma 2.6], a bit of Hodge theory implies that the
map H*(S1,) — @©;H*(X;) is injective whenever H¥(Sy,) — H¥(9S1,) is. Thus,
we obtain the first claim of Theorem 1 by induction, provided we show that H} (S ,,) =
H3(S1,) = 0 for almost all values of n, and we check that H'(S,) = H3(S1,) =0
for all remaining values of n. The first task is accomplished by the following.

Lemma 1
We have Hy,(S1,,) =0 for k > n.

Indeed, M;; = Al is affine. Moreover, it is well-known that the forgetful mor-
phism My, — M is affine. Finally, the morphism Sy, — My, is finite since it is
the restriction of the finite morphism S, — M ,, hence the claim holds.

Now, we give a closer inspection to Sy ,. Of course, it is the disjoint union of
gtn and ?in, corresponding to even and odd spin structures respectively. However,
since the unique odd theta characteristic on a smooth elliptic curve E is Op, there is
a natural isomorphism ?;n >~ M, SO we may restrict our attention to gin. First of
all, the following holds:

Proposition 2
H'(S{,)=0.

Proof. By the above argument, it is enough to check that H 1(§In) vanishes for n = 1.
In order to do so, we claim that there is a surjective morphism

f: MOA —>§I1

Indeed, let (C;p1,p2,ps,ps) be a 4-pointed stable genus zero curve. The morphism
f associates to it the admissible covering E of C' branched at the p;’s, pointed at ¢
and equipped with the line bundle Og (g1 — ¢2), where ¢; denotes the point of E lying
above p;. It follows that

H'(S{,) — H (M) = H'(PY) =0
and Proposition 2 is completely proved. O

Recall that the boundary components of My ,, are Ay, whose general member is
an irreducible n-pointed curve C of geometric genus zero with exactly one node, and
Ay 1, whose general member is the union of two smooth curves meeting at one node,
C; of genus 1 with marked points labelled by I C {1,...,n}, and Cs of genus 0 with
marked points labelled by {1,...,n}\ I (of course |I| < n — 2). The corresponding
boundary components of ?In are:
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o AT

irr’

e B

rr?

with an even spin structure on C
with an even spin structure on C' blown up at the node;
° Af 7» with even theta-characteristics on Cy and C5.

Notice that in this case Bff 1» whose general member should carry odd theta-characte-
ristics on both C] and Cb, is empty since a smooth rational curve has no odd theta-
characteristic.

Hence on gfn we have the boundary classes aifr, ﬂ;{r, and o{ 13 there are also the
classes

5irr - p*((sirr)
dip = p*(di1)

where
7_['_ —
p . Sl,n — Ml,”’l

is the natural projection. Exactly as in [6, § 7], there are relations

6irr = ai—‘;r + 2/81—; (2)
1.1 = 2. (3)

Lemma 3
The vector space H 2(?&) is generated by boundary classes.

Proof. We are going to deduce this from an Euler characteristic computation. Indeed,
we are going to show that

=+

X(51,2> =4. (4)

Since
=+ =+ =+ =+
X(S12) = 2h0(51,2) - 2h1<51,2) + h2(51,2)
= 2+ h2(S},)

from (4) we may deduce that h2(§1+,2) = 2. On the other hand, since the natural
projection ?ig — M 2 is surjective, H?(M, 5) injects into H? (giQ). It follows that
H? (512) is generated by di; and 4 g, which are linear combinations of al, gt

af@ by (2) and (3).
First of all, we compute X(Sff 1). It is clear that

and

X(S11) = 20°(S1,) — KA (ST ) = 2.

On the other hand, 0Sff , consists of exactly two points, corresponding to a 3-pointed
rational curve with two marked points either identified or joined by an exceptional
component. Hence

X(S11) = x(S11) — x(8S{,) = 0. (5)
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Next, we compute X(Sf 5). The natural projection Sff 9 — M 2 is generically three-to-
one, but there are a few special fibers with less than three points. Indeed, let (E;p1, p2)
be a smooth 2-pointed elliptic curve.

The linear series |2p;| provides a realization of E as a two-sheeted covering of P*
ramified over oo, 0, 1 and A. Denote by qg, g1, and ¢y the points of E lying above 0, 1,
and A\, so that the three even theta-characteristics of E are given by Og(p1 — qo),
Op(p1 — q1), and Og(p1 — q\). If A = % and ps = ¢y, then the projectivity of P!
defined by z — 1 — z induces an automorphism of (E;p1, p2) exchanging Og(p1 — qo)
and Og(p1 — q1). If A = —w (with w® = 1) and ps is one point lying above 527, then
the projectivity of P! defined by z — Z*T“ induces an automorphism of (F;p1, p2) that
exchanges ciclically its three even theta-characteristics. Since it is clear (for instance,
from [9, IV, proof of Corollary 4.7]) that the above ones are the only exceptional cases,
we have:

X(S13) = 3x(My2 \ {2 points}) + 2x(point) + x(point) = 0. (6)

In fact, x(M12) = 1, as observed in [3, (5.4)]. Finally we turn to the Euler
characteristic of gIQ. From [6, Examples (3.2)], and (3.3), and [3], Figure 1, we may
deduce that

=+
X(S12) = X(sz) + 2x(Mi4) + X(Sfﬁ) +4,

where M{M denotes the quotient of Mg, modulo the operation of interchanging the
labelling of two of the marked points.
Since x (M 4) = 0 (see [3, (5.4)]), relation (4) follows from (5) and (6). O

Let P a finite set with |P| = n and let  and y be distinct and not belonging
to P; define

— <+
5 : MO,PU{x,y} - Blj"_r — Sl,n

by joining the points labelled x and y with an exceptional component and taking
the unique even theta characteristic on the resulting curve. Then the analogue of [3,
Lemma 4.5] holds:

Lemma 4
The kernel of
& H (S),) — H* (Mo pugay))

is one-dimensional and generated by Oiyy.

Proof. By [3, Lemma 3.16], it is clear that £*(d;y) = 0. Moreover, from Lemma 3 it
follows that H? (?iz) is generated by d;; and 6y g; since d; ¢ pulls back to dg ¢y, which

is not zero, the claim holds for n = 2. Hence we can apply the inductive argument
of [3, pp. 113-114]. Tt follows that if £*(a) = 0 for o € H? (girn) then there exists a con-

stant a such that o —ady,, restricts to zero on all boundary components of gfn different

from A;;r. However, we claim that Afrr is linearly equivalent to QB;rrr. Indeed, this is

clear in gil =Pl Ifr: ?in — ?Il is the natural forgetful map, then A = 7*(Af)

and Bfrrr = W*(B;rrr). Hence o — ady, restricts to zero on all boundary components of
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gin and the claim follows exactly as in [3, Lemma 4.5], from Proposition 1 and the
analogue of [3, Proposition 2.8]. O

Proposition 5

The vector space H? (gin) is generated by boundary classes.

Proof. Let V be the subspace of H? (?in) generated by the elements ai ;- In view of
Lemma 4 and (2), it will be sufficient to show that the morphism £* vanishes modulo V.
The proof is by induction on n: for the inductive step we refer to [3, pp. 114-118],
while the basis of the induction is provided by Lemma 3. (]

Finally, we are also able to prove the last part of Theorem (1).

Lemma 6

We have H3(§In) =0.

Proof. Once again, by the exact sequence (1) and Lemma 1, it is enough to check that
H3 (gin) = 0 for n < 3. First, we deal with the case n = 3. By Proposition 5, H? (§i3)
is generated by the six boundary classes ozitr, ;{r, af@, af{l}, af{2}, and af{g}. Notice

further that o and B are linearly dependent. Indeed, if 7 : §I3 — gil is the

irr irr

natural forgetful map, from [3, Lemma 3.1 (iii)], it follows that ;. = 7*(a; ) and

Bt = 7*(B.), while Poincaré duality yields H 2(?;&) ~ H 0(?%) =~ Q. Hence we
deduce h? (gil:g}) < 5; next, we claim that

<+
X(Sl,s) =12. (7)
The statement is a direct consequence of the claim, since
=+ =+ =+ =+
x(S13) = 2h0(51,3) + 2h2(51,3) - 2h1(51,3)
—h*(S)5) <12 - h3(S1,).

First of all, we compute X(Si 3). The natural projection Si 3 — M 3 is generically
three-to-one, but there is a special fiber with only one point. Indeed, if (E;p1,p2, p3)
is a smooth 3-pointed elliptic curve realized by the linear series |2p;| as a two-sheeted
covering of P! ramified over oo, 0, 1 and —w (with w® = 1) and po, p3 are the two
points lying above —*3, then the projectivity of P! defined by z — ZZ“’ induces au-
tomorphisms of (E;p1, p2, p3) exchanging ciclically its three even theta-characteristics.
Therefore we have:

X(ST3) = 3x(My 3\ { point}) + x(point) = —2. (8)

Recall that x(M3) = 0, as observed in [3, (5.4)]. Finally we turn to the Euler
characteristic of ?I& From [6, Examples (3.2)], and (3.3), and [3, Figure 2], it is clear
that

X(S15) = x(S13) + 2x(Mj5) + x(Si1)x(Mo.a)

+ 3x(S) + 2x(Moa) + 12x (M 4) + 3x (S DT + 14.
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Since x(Mo4) = —1, x(Mp,) = 0 and x(Mps) = 1 (see [3, (5.4)]), now (7) fol-
lows from (5), (6) and (8). Finally, by Hodge theory of complex projective orbifolds,
the surjective morphism S;3 — Sy, for n < 3 induces an injective morphism
H3(S1,) — H3(S13) for n < 3. Hence the claim follows. O
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ABSTRACT

Let F' be an infinite field and let n, p1, p2, p3 be positive integers such that
n = pi1+p2 —I—pg.LetCl’g € Fp1><p2’0173 € FP1%P3 and 02,1 € Fp2xpr,
In this paper we show that appart from an exception, there always exist C'y 1 €
FPrXPr Oy o € FP27P2 and Cy 3 € FP2*P3 such that the pair

Ci1 Cip Cis
(A1, A2) = ’ N ’
Con Ca Co3
is completely controllable. In other words, we study the possibility of the
linear system X (t) = A1 x(t) + A2((t) being completely controllable, when
C1,2,C1,3 and Cy 1 are prescribed and the other blocks are unknown.

We also describe the possible characteristic polynomials of a partitioned
matrix of the form

Cip Cig2 Ci3
C=| Cy1 Cop Ca3 | € F™",
C31 C32 (33

where (11, (32, C3 3 are square submatrices (not necessarily with the same
size), when C'1 2, C 3 and C 1 are fixed and the other blocks vary.

* This research was done within the activities of the Centro de Estruturas Lineares e Combinatorias.
Keywords: Controllability; Characteristic Polynomials; Matrix Completion Problems.
MSC2000: 15A18, 15A29, 93B0S, 93CO05.
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1. Introduction

Control Theory is an important branch of mathematics that has several applications
to technology, engineering, economics and sociology.

Very often we use applications of Control Theory, as the air-conditioning system,
the oven, the iron, the hairdryer, the vehicle speed, and so on.

Currently a problem from Control Theory can be formalized as follows: “Given a
mathematical description of a system how to manipulate the input variables in order
to achieve a satisfactory performance, according to initial specifications?”

A very important problem in Control Theory is the following:

Problem. Given a system

X () = Ax(t) + BC(1), (1)

where x(t) € R™ denotes the state of a certain physical system to be controllable by the
input C(t) € R™, and A € R""™ B € R"™ ™ how to select the input ((t) in such way
that x(t) is driven to a certain desirable state?

In other words, the aim of this problem is to establish conditions under which the
system (1) is completely controllable, i.e., the pair (A, B) is completely controllable.
This problem is usually known as the Pole Assignment Problem.

Now consider F a field and let A € F"*" B € F™*™. The characterization of (1)
being completely controllable, when some entries of [A B] are prescribed and the others
are unknown has been often studied for many authors. In particular, when several
entries of [A B] are prescribed as 0, the problem is completely solved, see [12, 14, 15, 22].
When the prescribed entries are not necessarily equal to 0, there are only partial
solutions, see [1, 6, 27, 28]. In this paper we characterize the possibility of (1) being
completely controllable, where A and B are partitioned matrices of the forms:

Ci3

C C
! 1,1 1,2
C2,3

€ F"" B =
Cy1 Caa

] c FnXm

with C 1, Ca 2 square submatrices (not necessarily with the same size), when F' is an
infinite field, C 2, C1 3 and Cy ;1 are prescribed and the other blocks are unknown.

The approach used allows to solve another question in Matrix Completion Pro-
blems. In general, these problems consist in studying the possibility to “complete” a
matrix, when some of its entries are prescribed (i.e., are fixed), such that the resulting
matrix satisfies certain properties. In this context “to complete” means to attribute
values to the remaining entries. In other words, given a matrix and a part of the
given matrix (as a submatrix or some entries) the aim of these problems is to describe
conditions under which we can fill the unknown entries, such that the resultant matrix
satisfies the required properties. An important problem that motivates our work is the
following, a particular case of the Matrix Completion Problems, proposed by G.N. de
Oliveira in 1975.

Problem[18]. Let F be a field and let n,p,q be positive integers such that
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n=p+q. Let f(x) € Flz| be a monic polynomial of degree n. Let

A A
A= | OB 2 (2)
Ag1 Az

be a partitioned matriz, where Ay € FP*P, Ago € FI79. Suppose that some of the
blocks A; ji,j € {1,2}, are known. Under which conditions does there exist a matriz
of the form (2) with characteristic polynomial f(x)?

Note that this problem gives rise to essentially seven distinct problems, according
to the prescription of some blocks of A:
(P1) A1 prescribed;
(Py) Ay 2 prescribed;
(Pg) A171 and ALQ prescribed;
(Py) A1 and Ag o prescribed;
(Ps) A1 and Ag; prescribed;
(Ps) A1, A12 and Ag o prescribed;
(P7) A171,A172 and Ag,l prescribed.

Concerning problem (P;), G.N. de Oliveira presented the complete answer in [17].
The complete answer to problem (FP») was established by G.N. de Oliveira in [18].
H.K. Wimmer in [30] gave the complete answer to problem (P3). Problem (P;) has
only some partial answers obtained by G.N. de Oliveira in [20, 21] and by F.C. Silva
in [25]. Concerning problem (P5), as in the previous case, there exist some partial
results, established by G.N. de Oliveira in [19], F.C. Silva in [24] and M.G. Marques
and F.C. Silva in [13]. In [26] F.C. Silva presented a partial solution for problem (F).
Concerning problem (P7) we do not know any reference with nontrivial results.

It is remarkable the fact that after more than 30 years, many of these questions
are still unsolved.

Motivated by this problem, a natural question that arises is the following. Let F
be an arbitrary field. Let n, k,p1, ..., pr be positive integers such that n = p1+- - -+ p.
Let

Cipn - Cig

C= : : S AN (3)
Cia -+ Crk

)

where the blocks C;; € FPi*Pi 4,5 € {1,...,k} and Cy1,...,Cy ) are square subma-
trices.

Problem. Suppose that some of the blocks C; ; are prescribed. Under which con-
ditions does there exist a matriz of the form (3) with prescribed eigenvalues or charac-
teristic polynomial?

Obviously the prescription of the characteristic polynomial is more general since
it covers the situation of the eigenvalues of the matrix being outside of the field F.
Clearly, if all the eigenvalues of (3) are in F|, the description of the possible characteristic
polynomials of (3) simply consists in studying the eigenvalues of (3).
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In [3] we showed that given a matrix of the form (3) partitioned into &k x k blocks
of the same size p X p, with entries in an arbitrary field F, it is always possible to
prescribe 2k — 3 blocks of the matrix and the eigenvalues in F, except if, either all the
principal blocks are prescribed, or all the blocks of one row or column are prescribed.
In these exceptional cases, we identified necessary and sufficient conditions under which
it is possible to prescribe 2k — 3 blocks of the matrix and the eigenvalues in F. We also
noticed that there are additional necessary conditions if more than 2k — 3 blocks are
fixed.

Later, in [2] we described the possible characteristic polynomials of a matrix of
the form (3) partitioned into k x k blocks of the same size p x p, with entries in an
arbitrary field F. Our answer shows that it is always possible to prescribe k — 1 blocks
of the matrix and the characteristic polynomial, except if all the nonprincipal blocks
of a row or column are prescribed equal to 0 and the characteristic polynomial has not
any divisor of degree p.

When the blocks are not necessarily of the same size, the description of the eigen-
values of a matrix of the form (3), when some of its blocks are prescribed and the
others are unknown, becomes more difficult. In [4] we studied the possible eigenvalues
of a matrix of the form (3) with entries in an arbitrary field F', where C; ; € FP**Pi and
Ci1,-..,C are square submatrices, when a diagonal of blocks is prescribed. Notice
that when the prescribed positions correspond to “large” submatrices, then there are
necessary interlacing inequalities for the invariant factors [23, 29].

In this paper we study a particular case, when k = 3 and F' is infinite. In fact,
we describe the possible characteristic polynomials of

Cip Cip2 Ci3
C=| Cy1 Cop (3 |, (4)
C31 C32 (33

where C; ; € FPi*Pi g, j € {1,2,3} and Cy1, Ca, C33 are square submatrices, when
C1,2,C1,3 and Oy are prescribed and the remaining blocks are unknown.

2. Background

Let F' be a field.

Let D = F or D = Flz] and let m,n be positive integers. We denote by D™*"
the set of all matrices in D of type m X n.

The symbol | is used in the following way: if f(x), g(x) € F[z], then f(z)|g(x)
means “f(z) divides g(x)”.

Given ay,...,a, € F, we denote by diag(ay,...,ay) the following matrix:
al 0
0 an,

Now we present some definitions and results that are necessary for the rest of the
paper. In general these results can be found in many books on Linear Algebra, for
example see [5, 7, 8, 10, 11, 16].
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Let R be the set of all monic polynomials and the zero polynomial.

DEFINITION 1 Let A(z) € F[z]™*". The greatest common divisor choosen in R, of
the determinants of the submatrices of size k x k of A(x), k € {1,...,min{m,n}} is
denoted by dg(z). If k < rankA(z), we say that d(z) is the k-th determinantal divisor
of A(x). Make convention that dy(x) = 1.

It is known that if A(z) € F[z]™*" and rankA(z) = r, then:
(1) di(z) # 0 if and only if k£ < r;
(”) dk*l(x)‘dk(x)ﬂ ke {17 s 7T}'
DEFINITION 2 The k-th invariant factor of A(z) is the element
dy ()
dk_l(x)

with the convention that ig(z) = 1.

ir(x) = Jke{l,... ,rankA(x)},

Note that according to the previous definitions, the determinantal divisors and
the invariant factors of the matrix A(x) are monic polynomials.

It is known that ix_1(z)|ix(z), k € {1,...,rankA(x)}.

It is also known that:

(i) A(z), B(z) € F[z]™ ™ are equivalent if and only if they have the same in-
variant factors.

(ii) A(z), B(x) € F[z]|™™ are equivalent if and only if they have the same
determinantal divisors.

Let A € F™*"_ The polynomial matrix zI,,, — A is called the characteristic matriz
of A and its determinant is called the characteristic polynomial of A.

The invariant factors of xl,,, — A are called the invariant polynomials of A.

Note that the matrix x1,,, — A has rank m, since its determinant is different from
zero. Consequently A has m invariant polynomials,

fil@) [ | fn ().

It is also known that the characteristic polynomial of a matrix A € F"™*™ it is
equal to the product of its invariant polynomials.

The invariant polynomials of A which are equal to 1, are called the trivial invariant
polynomials of A. The remaining invariant polynomials of A are called the nontrivial
invariant polynomials of A and are denoted by i(A).

Remark 1 A, B € F™*™ are similar matrices in F if and only if they have the same
invariant polynomials.

Let f(z) = 2" +a, 12" ' +---4+a12 +ag, n > 1, be a monic polynomial of F[z].
The matrix
0 | Iy

—ag ‘ —Q1 - — Qp—1

C(f) =

is known as the companion matriz of f(x).
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It is not hard to see that the only nontrivial polynomial of C(f) is f(z) and
consequently, its characteristic polynomial is f(x).

If Ae FP*P B € FP*1 C € F7*P we denote by i[A B] the number of nontrivial
invariant factors of the matrix pencil [z, — A| — B] and by

1A
i
C
the number of nontrivial invariant factors of the matrix pencil
xl, — A
—-C ’
It is known from systems theory [9] that a pair (A, B), where A € FP*P, B € FP*4
is completely controllable if and only if all the invariant factors of the matrix pencil

(a1, — Al - B]
are equal to 1, if and only if the controllability matrix
C(A4,B)=| B AB --- AP'B |e

has rank equal to p, if and only if

minrank [\, — A| — B] = p,
AEF

where F is an algebraic closure of F.

Let Ay, Ay € FP*P| By, By € FP*4. The matrices [A; Bi] and [As Bs| are said to
be block-similar if there exist nonsingular matrices P € FP*P, () € F7*9 and a matrix
R € F7%P, such that

4 P 0
(a2 m )= m ]| o]

It is known that [A; Bj| and [As Bs| are block-similar if and only if the matrix
pencils [x], — Ai| — B1] and [2], — Ag| — By are strictly equivalent.

It is also known that the matrices [A; Bi| and [Ag Bs] are block-similar if and only
if the matrix pencils [z, — Ai| — Bi1] and [«], — As| — Bs| have the same invariant
factors and the same column minimal indices.

3. Main Results
Let F be a field and let n, k, p1, ..., pg be positive integers such that n = p; +-- -+ pi.

Let (r1,81)y..., (Tk,sk) € {1,...,k}x{1,...,k} and assume that r; < k,i € {1,...,k}.
Let Ay, s, € FPri*Psi i e {1,...,k}. Our main goal is to solve the following problem.

Problem. Under which conditions does there exist a completely controllable pair
of the form
Cipn - Crp— Cik
(A1, A2) = : : ; : (5)
Ci—11 - Cp_1k—1 Cr—1,k

with Cr, s, = Ap,.svi € {1,... k}?
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In [2] we established conditions under which there exists a completely controllable
pair of the form (5), when k£ — 1 blocks of the same size are prescribed and the others
are unknown.

Proposition 3

Let F' be an arbitrary field. Let A, € FPri*Psi i € {1,... k}. If one of the
following conditions holds, then there exists no completely controllable pair of the
form (5) such that Cy, s, = Ay, s,,1 € {1,...,k}. The conditions are the following:

(i3) There exists v € {1,...,k — 1} such that all the positions (r,j), with j €
{1,...,k}\{r}, are prescribed equal to 0.
(7i3) All the positions (i, k), with i € {1,...,k — 1}, are prescribed equal to 0.

0551

Proof. Let (A1, A2) be a pair of the form (5) such that C,, s, = A,, 5,7 € {1,...,k},

and assume that one of the conditions (i), (ii3) occurs.

Case 1. Suppose that (i3) holds. We may assume, without loss of generality, that
r =1. Let A € F be an eigenvalue of C1,1. Hence,

rank [)\In—p1 — A1| — AQ] <n-—pi. (6)

Consequently, (A1, A2) is not completely controllable.

Case 2. Suppose that (ii3) holds. Now let A € F be an eigenvalue of Aj.
Again, as in the previous case, (6) holds. Therefore (Aj, As) is not completely
controllable. (]

In the previous result we identified exceptional conditions for this problem, ne-
vertheless its solution is still an open problem. In order to give some insight into this
question, we start by studying the case k = 3. In this paper we identify conditions
under which the pair of the form (5) is completely controllable, when C 2, Ci 3,Co 1
are prescribed and the other blocks are unkown.

Our main result is the following.

Theorem 4

Let F' be an infinite field. Let n,p1, p2, p3 be positive integers such that n = p1+
p2 + p3. Let Cip € FPr*P2 (3 € FPU*P3 and Cyy € FP2*P. Then, there exist
01,1 € FPixpr, 0272 € [P2xp2 0273 € FP2*P3guch that the pair

Ci1 Cip Ci3
A1, Ag) = ’ L ' 7
(A1, 42) ([ Con1 Oz ] [ Co3 (7)
is completely controllable, except if the following condition (E) holds:
(E) 0172 =0 and 01’3 =0.

Lemma 5

Let F' be an arbitrary field. If (E) occurs, then there exists no completely con-
trollable pair of the form (7), with C1 2, C13 and Ca prescribed.
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Proof. This result is a particular situation of Proposition 3. U

The following theorem was established separately by E.M. S& [23] and R.C.
Thompson [29] and it is a very important result in Matrix Completion Problems.
Usually in Matrix Theory this result is known as The Interlacing Inequalities for the
Invariant factors.

Theorem 6 [23, 29

Let F' be an arbitrary field. Let l1(x),...,ls(x) € F|x| be monic polynomials such
that ly(z) | -+ | ls(x). Let A(z) € [x]qu and let i1(x),...,i.(x) be the invariant
factors of A(m) Then, there exist B(z) € F[z]P*("=9 C(x ) Flz]m=p)xa D(z) €
Flz]m=p)x("=9) such that

; ] € Flx]™ "

has invariant factors ly(z),...,ls(x) if and only if the following conditions are
satisfied:

(ig) r<s<r+(m-—p)+(n—q);
(tig) s < min{m,n};
(tiig) U | i, for every k € {1,...,r};
(106) ik | lpt-(m—p)+(n—q), for every k € {1,...,r} such that k+ (m —p)+(n—q) <s

The following lemma is a consequence of a result established by F.C. Silva in [28].

Lemma 7 [28]

Let F' be an infinite field. Let A171 € Fnxa, ALQ € Fnxa, A173 € Fnxa,
AQJ € F22*% gand letv € {0, e, q1 +q2}. There exist A272 € F92%%2 gnd A273 € Fa2xas

such that
; [ Aip Aig Arg

<w
As1 Azz A3z

if and only if
. { | Arn
max<i| A1 A A } N —q3p <
Ao

The following result was obtained by H.K. Wimmer in [30], where the author
provided the complete answer to problem (Ps3) presented in Section 1.

Theorem 8 [30]

Let F be an arbitrary field. Let p,q be positive integers such that n = p 4+ q and
let f € F[z] be a monic polynomial of degree n. Let Ay € FP*P, Ay, € FP*9. Let
fil -+ |fp be the invariant factors of the matrix

[xIp - A1’1| — ALQ] .

Then, there exist Ag 1 € F7P, Ago € F'7%9 such that the matrix of the form (2) has
characteristic polynomial f if and only if fi--- fp|f.
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The following result was established by F.C. Silva in [24], where the author ob-
tained a partial solution to problem (Ps) presented in Section 1.

Theorem 9 [24]

Let I' be an arbitrary field. Let p,q be positive integers such that n = p + q.
Let ci,...,¢c, € F. Let Ajo € FP*9 Ayy € F9*P. Then there exist A;; € FP*P,
Ay € F9°1 such that the matrix of the form (2) has eigenvalues c1, . .., ¢, if and only
if one of the following conditions is satisfied:

(i9) p# Lorq#1;

il9) p = q = 1 and the equation

(o) $é—(61+62)x+ab+0102:0
has one root in F, where Ay 5 = [a] and Az = [b].

Proof of Theorem 4. Exception (E) has already been justified. Now, suppose that
condition (E) is not satisfied. Let r = rankC)3. Let P € FP1*P1 Q) € FP3*P3 bhe
nonsingular matrices such that

0 0
PC3Q = ool

Partition PC 2 as follows:

By
PCi2 = E
2

where By € F1=")%p2 By ¢ Fr*P2_ Let s = rankB;. Bearing in mind that (E) is not
satisfied, at least one of the numbers r, s is different from zero. Let R € F®1—7)xp1-1)
S € FP2XP2 he nonsingular matrices such that

0 0
RByS = [ ] |
0 I

172 _ [ RB.S 1 c e

and C’{73 = PC43Q). Consider Cgle_l partitioned as follows:
Oy P! = [ By Ej } ;

where By € Frxti=n) gy € Pr Let Gy = | STUEIRTY STUE, | Let
C1, = C(aPr) € FPY*Pi Since at least one of the numbers 7, s is different from
zero, it follows that the pair

(Clu[cla Cis))
is completely controllable, i.e.,

z[ Cly Cl, Cfy } = 0.



344 CRAVO

Now suppose that a1] - |y, are the invariant polynomials of C7 ; and (|- - - |3y,
are the invariant factors of the matrix

[ xIIh - Ci,l ‘|

—Cy,
According to Theorem 6, it follows that 3;|cy,i € {1,...,p1}. Sinceay = --- = ap, -1 =
1, then 81 = --- = 3,,—1 = 1. Consequently

!
i Cra <1.
Cyq |~

Cl
max {z[ iy Ciy Cig ] i l C},l 1 _pg} — 0.
2,1

By Lemma 7 there exist Cj, € FP2*P2, () 5 € FP2*P3 such that

( / A/) _ Ci,l 01,2 Ci,S
1,412 C/ C/ ) C/
2,1 2,2 2,3

is completely controllable. And { A Al } is block-similar to

Then

[ A 4 | =yt [ AL Ay | 2022,
where

I 0
7 = [ p1+p2 ] . with

A Iy
A= { 0 X } e Fpax(mitp2)  x — [ ByS ‘| c FP3xp2
) 0 )
Y, 0 R .
Z2 = ,Zg = 1 5 with
0 I, | 0 @

v _ P 0 Y_'R 0
1= 0 S—l 72_-OIr+p2 .

Since [A; As] and [A] Ab] are block-similar, then the matrix pencils
[‘TIP1+P2 - A1| - AQ]

and
[$Ip1+p2 - A,1| - AIQ}

have the same invariant factors. As (A}, A}) is completely controllable, i.e.,
i[A] A = 0, then i [A; Ag] = 0, i.e., (A, As) is completely controllable. Clearly
the pair (Aj, Az) has the prescribed form. O
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Proposition 10

Let F' be an arbitrary field. Let n,p1, p2, p3 be positive integers such that n =
p1+ p2 + ps. Let f € Flz] be a monic polynomial of degree n. Let C1o € FP1*P2
Ci3 € FPXP3 and Cyy € FP2*P1 If the exceptional condition (E) is satisfied, then
there exist Cy 1 € FPixpr Cop € Fpr2xp2 Cy3 € FP2xps, Cs1 € EFpsxp1 C32 € FP3xp2
C3,3 € FP3*P3 such that the matrix of the form (4) has characteristic polynomial f if
and only if f has a divisor of degree p.

Proof. Suppose that condition (E) occurs and assume that there exist C; € FP1*P1,
02,2 € FPr2xp2 0273 € FP2xps 0371 € Fp3xri C372 € FP3xpz ngg € FP3*P3 guch

that the matrix of the form (4) has characteristic polynomial f. Let aq|- - |ay, be the
invariant polynomials of C;; and let (1|---|8, be the invariant polynomials of (4).
Note that |- --|ayp, are the invariant factors of the matrix

[ CEIpl — Cl 1 701,2 *0173 } .

)

According to Theorem 6, a|Bi+py+ps, ¢ < p1. Therefore,

aq "'O‘p1|/ﬁl+p2+p3 o ﬁn|ﬂl : Bn = f

As aj - - oy, is the characteristic polynomial of C1 1, then deg(o; - - - ap,) = p1 and so
the result is satisfied.

Conversely, let g(z), h(x) € F|x] such that f = gh, with deg(g) = p1. Let G =
C(g) € FP*Pr and H = C(h) € FP2tps)x(P24p3) Then for every C3; € FP3*P1 the

matrix
G B
) 8
l D H ] (8)
where
B=[Ciy i3] (9)
and
C
p=| % (10)
Cs1
has characteristic polynomial f. O

Corollary 11

Let F' be an infinite field. Let n,pi, ps, p3 be positive integers such that n =
p1+ p2 + p3. Let f € Flz] be a monic polynomial of degree n. Let C1o € FP1*P2
Ci3 € FP*P3 and Cyy € FP2*P1 If (E) is not satisfied, then there exist Cy 3 € FP1*P1,
02,2 € FP2xp2 0273 € FP2xps 0371 € [psxp1 0372 € [P3xp2 03,3 € FP3*P3 such that
the matrix of the form (4) has characteristic polynomial f.

Proof. Assume that condition (E) is not satisfied. According to Theorem 4 there
exist O € FPVP1 Oy o € FP2XP2 Oy 53 € FP2*P3 guch that the pair of the form (7)
is completely controllable. Since 1|f, applying Theorem 8, there exist Cs; € FP3*P1,
C39 € FP3XP2 (O35 € FP3*P3 such that the matrix of the form (4) has characteristic
polynomial f. O

The following result is an immediate consequence of Proposition 10 and Corol-
lary 11.
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Corollary 12

Let F' be an infinite field. Let c1,...,c, € F. Let C1 o € FP1*P2 (3 € FP1*P3
and 0271 € FP2XP1 Then there exist 0171 € Fprixp 0272 € FP2xp2 02’3 € FP2xp3
C3,1 € FP3XPL (Cgo € FP3%P2 (33 € FP3*P3 such that the matrix of the form (4) has
eigenvalues cy, . .., Cp.

Note that Corollary 12 is still valid for arbitrary fields, as we show in the following
result, with a different approach.

Proposition 13

Let F' be an arbitrary field. Let ci,...,c, € F. Let Cy 9 € FP1*P2 () 3 € FPLXP3
and Cy1 € FP2*P1. Then there exist C1 € FPV*P1, Cyop € FP2XP2 (Cy3 € FP2XP3,
C31 € FP3XPL (Cg o9 € FP3XP2 (33 € FP3*P3 such that the matrix of the form (4) has
eigenvalues cy, ..., Cp.

Proof.  Case 1. Suppose that condition (E) is satisfied. Let G = diag(c1,...,¢p,),
H = diag(cp,4+1,...,¢n) and let C3;7 € FP3*P1 be an arbitrary matrix. Let B €
Frix®24p3) and D e FP2+p3)xP1 with the forms (9) and (10), respectively. Then, the
matrix of the form (8) has eigenvalues cy,. .., cp.

Case 2. Suppose that condition (F) is not satisfied and Cy; = 0. Let G and H
defined as in the previous case. Let C3; = 0 € FP3*P1, Let B € FPr*(P24ps) and
D € FP2+p3)xp1 yith the forms (9) and (10), respectively. Then the matrix of the
form (8) has eigenvalues c1, ..., c,.

Case 3. Suppose that condition (E) is not satisfied and Cy; # 0. Let C3; €
FP3*P1 be an arbitrary matrix. Let B € FP1<X(P21ps) and D e FP2tps)Xp1 with the
forms (9) and (10), respectively. Since ps + p3 # 1, according to Theorem 9 there
exist G € FP*P1 and H € FP2+rs)x(P24p3) guch that the matrix of the form (8) has
eigenvalues ci,...,cp,. O

4. Concluding Remarks

In this paper we establish conditions under which the system of the form (1) is com-
pletely controllable, when some entries of [A B] are prescribed and the others are
unknown. This is an advance in this type of problems. However the general problem
of finding a completely controllable pair of the form (5), when k of its blocks are fixed
and the remaining are unknown, is still open.

Our approach allows to solve a special question on Matrix Completion Problems.
Considerable work has been done in this type of problems, however many questions
still have only partial solutions and others remain open. Further research is required
to solve this type of problems.

The general problem of describing the possible characteristic polynomials of a
matrix of the form (3) when k£ > 3, and some of its blocks are prescribed and the
remaining are unknown is still open. When the prescribed positions correspond to
“large” submatrices, there are necessary interlacing inequalities involving invariant
factors [23, 29]. The technique used to prove these inequalities can be very hard.
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In this paper we establish new results for the case £ = 3, which is an advance

concernig this question. On the other hand, our approach unifies important problems
in this area. In particular, the work developed in this paper is an extension of Oliveira’s
problem [18].
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