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ABSTRACT

We consider differences of weighted composition operators between given
weighted Bergman spaces HS° of infinite order and characterize boundedness
and the essential norm of these differences.

I. Introduction

Let v, w be strictly positive bounded continuous functions (weights) on the open unit
disk D of the complex plane C. We define the weighted Bergman space of infinite
order as follows

H®:={f € HD); | fllo:= sup v(2)]f(2)] < oo},

where H (D) denotes the space of all holomorphic functions. Endowed with norm ||.||,,
the space H;° is a Banach space. Such spaces have been studied by various authors
while investigating growth conditions of analytic functions. As an assertment of papers
on this topic we would like to mention [18, 20, 21, 11, 2, 13, 14, 9, 3].

Furthermore we consider analytic self maps ¢1, ¢ of D as well as analytic functions
1,99 : D — C. These maps induce weighted composition operators

Coy  H(D) — H(D), f—vi(foes), i=1,2.

Composition operators and weighted composition operators have been investigated
on various spaces and by several authors, see e.g. [5, 4, 7, 15, 16, 17, 6, 12]. We
are interested in differences Cy, 4, — Cg, 4, of weighted composition operators acting

Keywords: Weighted composition operators, essential norm, weighted Bergman spaces of infinite
order.
MSC2000: 47B33, 47B38.
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between weighted Bergman spaces of infinite order. In [12] we studied the essential
norm of such differences in case of quite special weights. The aim of this article is to
characterize boundedness and the essential norm of differences Cy, , — Cgy, 4, under
more general assumptions on the weights. The estimates we obtain in this note differ

from the conditions given in [12]. Otherwise for ¥y = 19 = 1 we get exactly the result
of [6].

[l. Notations, definitions and auxiliary results

For notation and general information on composition operators see the excellent mono-
graphs [8, 19]. Let us denote the closed unit ball of H° by BS°. When dealing with
weighted Bergman spaces of infinite order an important tool is the so called associated
weight introduced by Anderson and Duncan in [1] and thoroughly studied by Bierstedst,
Bonet and Taskinen in [3]. For a weight v the associated weight v is given by

0(z) == : -
—oswp{lf(2)sf € By 0l g

where ¢, denotes the point evaluation of z. By [3] the associated weights have the
following properties:

zeD,

(i) o is continuous,

(il) 0 > v > 0,

(iii) for every z € D we can find f, € BJ° such that f.(z) = ﬁ
A weight v is called essential if there is a constant C' > 0 such that

v(z) <0(z) < Cu(z) for every z€ D.

Examples of essential weights as well as conditions when weights are essential may be
found in [3, 4, 5]. We are especially interested in radial weights, i.e. weights which
satisfy v(z) = v(|z|) for every z € D. If a radial weight v satisfies the Lusky condi-
tion (L1) (due to Lusky [13])

o—k-1
@) w2 )

koov(l—27k)
then v is essential.

We say that a weight v is typical, if it is radial, non-increasing with respect
to |z| and limp,;_v(2) = 0. In the sequel every radial weight is assumed to be
non-increasing. In order to treat differences of composition operators we need some
geometric data. Recall that for any z € D, ¢, is the M6bius transformation of D which

interchanges the origin and z, namely, ¢.(w) = =, w € D. The pseudohyperbolic
distance p(z,w) for z,w € D is defined by p(z,w) = |p.(w)| = %’ :

An operator T' € L(E,F) from a Banach space E to the Banach space F
is called compact if it maps the closed unit ball of E onto a relatively compact
set in F. The essential norm of a continuous linear operator T is defined by
IT||e := inf {||T" — K||; K is compact}, i.e. the essential norm is the distance to the
compact operators. Finally, let us list up some auxiliary results we need for proving
our results.
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Lemma 1 (Bonet, Lindstrom, Wolf, [6])

Let v be a radial weight satisfying the Lusky condition (L1) and let f € HS®.
Then there exists a constant C,, (depending on the weight v) such that

S } p(z,p)

() — F)l < Cv\lfl\vmaX{v(z), o

for all z,p € D.

Theorem 2 (Contreras, Herndndez-Diaz, [7])

Let v and w be weights and ¢ : D — D and ¢ : D — C be analytic. Then the
operator Cg ., : Hy® — Hgy is bounded if and only if sup,¢p |[¢(2)| ¢((z)) < 0.

[ll. Continuity and essential norm of differences of weighted
composition operators

First, recall that the operator C¢1 w1 — Cooape + Hy® — HyP is bounded if and only if
sup w( 2)sup {[¢1(2) f(d1(2)) = va(2) f(d2(2))]; | € B} < o0,

Proposition 3

Let v and w be weights such that v is radial and satisfies (L1). Then Cy, ,, —
Copopo + H® — HyY is bounded if and only if

(1) sup,ep w(z) min {|1(2)], [12(2)]} p(@1(2), P2(2)) max{m’m} <0,
(i) sup.ep [¥1(2) — ¥a(2)| w(z maX{WW} < o0

Proof. We suppose that the operator Cdn — Cy, is bounded, i.e.
M = sup w(z)sup {|¢1(2)f(d1(2)) — ¥2(2) f(2(2))]; f € B} < o0.
z€D

Let us start with proving condition (i) indirectly. W.l.o.g. we can find a sequence
(zn)nen C D such that

1 1 } >n
6(¢1(2n)) ’ Q~}(¢)2(Zn)) -

w(zn) min {‘wl (Zn)a ’wQ(zn)‘} ,O(Cbl(zn)a ¢2(zn)) max {

We fix n € N and distinguish the following cases:

First, we assume max{ﬁ(qsll(zn)) , ﬁ(cbzl(zn))} = 5(%1(2”)) . Then there is a function

fn € B such that |fn(¢1(zn))| = m Next, we put h,(2) = fn(2)pg, Zn)( 2)
for every z € D. Obviously h,, belongs to 5g°. This yields

M > w(zn) |1h1(2n) hn(¢>1(zn)) - 1/)2(%) hin (¢2(Zn))|

w(zp) min{|¢1(2n |2 Zn)|} ‘ ¢1 ‘P ¢1(2n), P2(2n))

n.

v IV

Y
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Secondly, we suppose max{ﬁ(d)ll(zn)), @(<1>21(zn))} = m Choosing f,, € By°

such that | f,(¢2(2zn))| = m we now set i (2) := fu(2)@g, (2,))(2) for every z € D
and get analogously to the previous case

M > w(z,) min {|11(zn)|, |¥2(2n |}

’P d1(2n), P2(zn)) > n.

Joining both cases, for every n € N we obtain

M 2 ) min {4 )] a1} (6 (o) a(e) mase { s = )

> n,

which is a contradiction.

It remains to show (ii). Fix z € D and consider the following cases:

First, we suppose min {|¢1(2)], [¢2(2)|} = [11(2)] and select f, € B such that
|f2(h2(2))| 0(¢2(z)) = 1. Hence an application of Lemma 1 gives

w(z) [¥1(2) = ¥2(2)| = = w(2) [P2(2) — ¥1(2)] | f=(92(2))]

< w(z) [Ya(2) f2(d2(2)) — ¢1(2) fz(d1(2))]
+ w(2) [P1(2) f2(91(2)) — ¥1(2) f2(¢2(2))]

M +w(z) [1(2)] | f2(2(2)) = f=(¢1(2))]

M

<
< + Cyw(z) min {|¢1(2)], [Y2(2)|} p(¢1(2), P2(2))

. max{f»(ml(z))’ ®<¢21<z>>} '

Secondly, let min{|¢1(2)],|¢2(2)]} = J2(2)]. Choose f, € BJ® with
|f2(61(2))|0(p1(2)) = 1. Proceeding as in the previous case we get

< M+ Cyw(z) min {[91(2)], [Ya(2)]} p(d1(2), p2(2))

. max{@(qsll(z)) ’ a<¢21<z>>}'

Joining both cases and using (i), we can deduce condition (ii).
For the converse fix f € B° and z € D and distinguish the following cases:
If min {|¢1(2)], |[¢2(2)]} = |[¢1(2)], using Lemma 1 yields

w(z) [Y1(2) — 2 ()]

1
o(¢1(2))
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[01(2) f(¢1(2)) = 2(2) f(d2(2))| < [1(2)] [f(#1(2)) — f(d2(2))|
+ 11(2) — 2(2)| | f(d2(2))]
< Cy [1(2)] p(01(2), 92(2))

X rnax{ ! ! }
v(¢1(2)) " v(¢2(2))
+ |¢1(Z) - ( )| ( 1(z))
< Gy min {[¢1(2)], [Ya(2)]} p(1(2), h2(2))

1 1
8 max{v(¢1(z)) ’ v(@(Z))}
1 1
+ [¥1(2) = a(2)| max{v(¢1(z)) ’ v(¢2(2))}'

In case min {|¢1(2)|, |¥2(2)|} = |2(2)| we proceed analogously to get

sup [1(2)f(¢1(2)) — ¥2(2) f(¢2(2))] < o0.

zeD

From this we conclude that the operator is bounded if the above conditions are satis-
fied. (|

Next, we give an example of non-bounded operators Cy, 4, and Cg, 4, such that
the difference is bounded.

EXAMPLE 4 Choose w(z) = v(z) = 1 — [z] = 0(2), ¢1(z) = Z and ¢o(z) = 2 +
t(z — 1)3 for every z € D such that ¢ is real and |¢| so small that ¢ maps D into D
as well as 11(2) = ta(z) = 1= for every z € D. Obviously v and w are radial
weights and v has condition (L1). Moreover the functions ¢; and 2 belong to the
space Hy°. By [7] Proposition 3.1 Cy, 4, is not bounded since for z = r € R we have

Kz (r)|% = ;2 — oo if 7 — 1. Analogously we can show that Cp, s, is not

bounded. By [15] Example 1 we know p(¢1(2), p2(2)) < %'\z — 1] < oo, where § is a
constant. This yields

w(z) [ S Al

Slelgle(z)\mp(m(z),@(z))§ U T B Sl <o

and igg\wl(z)—wg(z)\m — 0 as well as

sup 01 (2= 55 p(01(2),62(2)) < sup L ,f ;L(‘ _ 1)3@rz S <00
and sup 4 (2) = v (2)| s = .

Hence the corresponding difference Cy, y, — Cy, 4, is bounded.
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Theorem 5

Let v and w be radial weights such that v is typical and satisfies the Lusky
condition (L1). Let 1,99 € H such that there are constants o, > 0 with
a < |$;8| < @ for every z € D. If ¢1,¢2 : D — D are analytic maps such that
l|[d1lloe = l|P2]lc = 1 and Cy, 4y, Cgyapp : Hy® — Hg® both are bounded, then the
essential norm ||Cy, p, — Cpy .|| is equivalent to the maximum of the following ex-

pressions:

(i) lim SUP|¢; (2)|—1— Wl(z)‘ p(¢1 (z), q§2(z)) maX{@(¢ll(z)) ) 1;(¢21(z)) };

(ii) lim sup|g, (»y|—1— W2(Z)‘ p(61(2), $2(2)) max{@(qsll(z)) ) ﬁ(¢21(z))}7

(i) 10 SUPi 10 (29 o)) 1 W21 (2) = ¥2(2) [ max { 552y » 5783y -

Proof. First we want to prove that there is a constant C > 0 such that
Cmax{ (i), (i), (4i1)} < ||Cp, 1 — Cgopslle- Let us start with considering (i).
(i) Let (z)n € D be a sequence with |¢1(zy,)| — 1 such that

s el ) o { ST Sty ) A o)
. 1 1
= w)lllil)fglf_ w(z)[P1(2)] p(P1(2), P2(2)) max { N6 (2) 5 a(2) } :

In case max{ﬁwll(zn)), f)(¢21(zn))} = f)(dnl(zn))’ since |¢p1(zn)| — 1, by going to a sub-
sequence if necessary, we can use the proof of Theorem 3.1 in [10] to find functions
(gn)n € H® such that

oo
Z lgn(2)] <1 forall ze D,
n=1

and gn(¢1(2n)) > 1 — (3)" for every n. Then lim, |gn(¢1(25))| = 1. In the sequel
we want to explain roughly how to construct these functions following the proof of
Theorem 3.1 in [10].

First we put k(z) := Z;rl for every z € D. Then k is holomorphic on D and
continuous on D such that k(1) =1 and |k| < 1 on D\{1}. Next we consider u(z) :=
221 as well as u,(2) == u(z)% for every z € D. Each u, is holomorphic on D and
continuous on D such that ||up|ec = 1, un(1) = 0 and |u,(2)| — 1 for every z € D.
By induction we can find two increasing sequences (my);, (j;); C N, a sequence (¢;); of
complex numbers with |¢;| < 1 for every [ € N and a subsequence (¢(2;)); of (¢(zn))n
such that

N
sup Z |(Clkmlujz)(z)f < 1 forevery N €N and

z€D [=1

1
en (E™V ;) (o(zn)) > 1— o for every N € N.

Putting gn(2) := (enk™Nu;y )(2) for every z € D and for every N € N, we obtain the
functions above. For more details we refer the reader to [10].
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For every m we can also find f, € B{° with f,(¢1(z,)) = m Set
ha(2) = gn(2) Ppy(zn)(2) fn(2). Thus, h, € Hp° with ||h,]|, < 1. Since the stan-
dard basis (ey)n for ¢y tends weakly to zero, so does (hy)n,. Now let K : H® — HX
be a compact operator. Then lim, o ||Khy||lw = 0. For each n,

[[41C, — 2Cy, — K|| > [[(¥1Cs, — ¥2Cs,) hnllw — [ K hp|w,

and thus we conclude that
H¢10¢>1 - ¢20¢2 - KH > lim sup le(hn © ¢1) - wQ(hn ° ¢2)Hw

> lim Supw(zn)wl( zn)hn(91(2n)) — 2(2n) hn(B2(20))]
= limsup w(zn) 11 (zn)l19n (01 (20))l| €2 (20) ($1(20)) Fr(91(20))]
w(zn)
(61 (zn))”
Now, let us assume max {f)(dnl(zn))’ U(¢2(Zn))} (¢21(zn If |¢2(zn)| # 1 there are
only finitely many n for which this is the case, since v is typical und |¢1(z,)| — 1.

Then these n’s can be omitted and we have the first case. If |p2(z,)| — 1, analogously
to the previous case, choose functions (g, ), € H> with

= limnsup |1 (2n)| = p(P2(2n), d1(2n))

Z]gn )] <1 forall zeD,

and limy, |gn(P2(z,))| = 1. For every n we select f, € Bg° such that f,(¢2(z,)) =
(¢21( —y and set hy, (2) := gn(2) Pg,(20)(2) fu(z). Proceeding in the same way as above

(zn)|

and taking into account that by assumption a < le(zn 1 < @ for every n € N we get

[41Co —aCiy = K| 2 limasup )| 5 (01 ). ()
1 [th1(2n)|  w(2n)

5 limsup [ ()| p(b1(2n), P2(2n))

B [¢2(20)| 0(61(2n))

1 w(2n)
B hmsup|1/)1(zn)|ﬁ(¢2( )) p(01(2n), P2(2n)) -

Joining both cases we get (i).

(ii) follows in an analogous way.

(iii) If p(¢1(2),P2(2)) — o # 0, when |¢p1(2)] — 1 and |p2(z)] — 1, then
(iii) follows from (i) and (ii). Therefore we can assume that p(¢1(z), ¢2(z)) — 0
if |¢1(2)] — 1 and |¢2(z)] — 1. Let (z,)n, be a sequence with |¢p1(z,)] — 1 and
|p2(2n)| — 1 such that

. 1 1
hrlgn w(2n)[¥1(2n) — 2(2n)] max{ﬁ(qbl(zn)) ’ f’(@(z"))}

. 1 1
= o I (E) —dha()max sy @@
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If max{ﬁ(dnl(zn))’ 6(¢21(Zn))} = Wl(zn)) we choose (fn)n and (gn)n as in the first case
in the proof of (i) and set hy(2) := gn(z)fn(2). Then h,, € B° and h,, — 0 weakly in
H°. Take a compact operator K : Hy° — Hg°. Hence limy, |[Khy|lw = 0. Thus we

obtain

lv1Cy, —Y2Cy, — K| > limnsup w(2n) |11 (20) hn (1 (2n)) — Y2(2n) hn(2(2n))|
> limnsup w(zn)|1/11(2n) - ¢2(Zn)|’hn(¢1(2n))|
— limnsup w(zn)|¢2(2n)”hn(¢1(zn)) - hn(¢2(zn))| :

Now, if min {|¢1(2),|v2(2)|} = |¥1(zn)| take into account that by assumption

mg:g} > «a. Using Lemma 1 and the boundedness of Uy, 4, this yields

lirnnsup w(zn)|2(zn)| [hn(D1(2n)) — hn(d2(2n))|

< élimnsup w(zn)|w1(zn)| p(é1(2n), ¢2(Zn>)w =0.

If min {|¢1(2), [¢2(2)|} = [¢2(25)], then obviously

limnsup w(zn)|Y2(2n)||hn(1(2n)) — hn(P2(zn))| = 0.

Next we assume max{ﬁ( ¢11(Zn)), B d);(zn))} = m and show the claim com-
pletely analogously to the previous case.

We now prove that there is a constant C* > 0 such that max{(i), (i), (i77)} <
C*(|Cgy 50 — Coopnlle- Take the sequence of linear operators Cj, : H(D) — H(D),
k € N, defined by Cirf(z) = f (kiﬂz), which are continuous for the compact open
topology and C}f — f uniformly on every compact subset of D and the operators
Cy : H® — H3 are well-defined and compact with ||Cy|| < 1.

For fixed k € N we have,

[11Cp; — V2Cg,|le < ||(1h1Cg; — 12Cg,)(Id — Cy)]l.

Let f € By® and fix an arbitrary r € (0,1). Set g := (Id — C)f, so g, € H° and
l|gkl|lu < 2. Then

[11Cg, — 12C4, ||, < S [(11Cg, — 12Cy,) gk |,

< sup sup  w(2)|V1(2)gre(01(2)) — V2(2)gr(¢2(2))]
[ f1lo<1 {z5]h1(2)|>r}

+ osup osup w(2)[P(2)gk(01(2)) = Da(2)gr(¢2(2))]
1£1lo<1 {z]¢2(2)>r}

+ sup sup w(2)|P1(2)gr(¢1(2)) — P2(2)gr(¢2(2))|
[1£1lo <1 {z;|¢1(2)|<r)| P2 (2) <7}

= Ik,r + Jk,r + Lk,r-
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To estimate the first term Iy ,, for z € D with |¢1(2)| > r we use Lemma 1 as in the
proof of Theorem 2 to get,

(2)|11(2)gr(d1(2)) —¢2(Z)gk(¢2(z))‘
(2)[1(2)] |9k (D1(2)) — gr(d2(2))]
(2)|[¥1(2) — ¥a(2)] |gr(d2(2))|

< 2l EIp(er () e mx{ s
w(2)[1h1(2) = ¥a(2)| |gr(2(2))]-

Analogously we can estimate the term Jj .

The sequence of operators (Id — Cy)y satisfies limyg(Id — C)g = 0 for each g in
H (D), and the space H(D) endowed with the compact open topology co is a Frechet
space. By the Banach-Steinhaus theorem, (Id — Cj ) converges to zero uniformly on
the compact subsets of (H(D),co). Since the closed unit ball of HJ° is a compact
subset of (H (D), co) we conclude that

lim sup_sup [((Id — Cp)f)(€)] = 0.
[1fllo<1[g|<r

If |¢2(2)| < 7 in the term I, then we conclude that

lim hmksur) Iy <2 l};ln(n ;tiplw( z) ~|zi:1((z Z))|) p(¢1(2), $2(2)).
In the case |¢a(2)| > r, we have that
lim limsup [, <2 lim sup w(z)|1(z) — ¥2(2)] maX{~ SRR }
r—1 min{|é1 ()], é2(2)|}—1 0(p1(2))" 0(¢2(2))

+2 lmsup w(2)]41(2)] (61 (2), 62 (2)) { 3(61(2)) 762 (2) } ‘

Analogously we consider the cases [¢1(2)| < 7 and [¢1(z)| > r in the term J ;..
Since 1,12 € Hp’, we have that lim,_j limsupy Ly, = 0, and the statement
follows. 0
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