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Abstract

We consider differences of weighted composition operators between given

weighted Bergman spaces H∞v of infinite order and characterize boundedness

and the essential norm of these differences.

I. Introduction

Let v, w be strictly positive bounded continuous functions (weights) on the open unit
disk D of the complex plane C. We define the weighted Bergman space of infinite
order as follows

H∞v :=
{
f ∈ H(D); ‖f‖v := sup

z∈D
v(z)|f(z)| <∞

}
,

where H(D) denotes the space of all holomorphic functions. Endowed with norm ‖.‖v,
the space H∞v is a Banach space. Such spaces have been studied by various authors
while investigating growth conditions of analytic functions. As an assertment of papers
on this topic we would like to mention [18, 20, 21, 11, 2, 13, 14, 9, 3].

Furthermore we consider analytic self maps φ1, φ2 ofD as well as analytic functions
ψ1, ψ2 : D → C. These maps induce weighted composition operators

Cφi,ψi
: H(D)→ H(D), f → ψi(f ◦ φi), i = 1, 2 .

Composition operators and weighted composition operators have been investigated
on various spaces and by several authors, see e.g. [5, 4, 7, 15, 16, 17, 6, 12]. We
are interested in differences Cφ1,ψ1 − Cφ2,ψ2 of weighted composition operators acting

Keywords: Weighted composition operators, essential norm, weighted Bergman spaces of infinite
order.

MSC2000: 47B33, 47B38.
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between weighted Bergman spaces of infinite order. In [12] we studied the essential
norm of such differences in case of quite special weights. The aim of this article is to
characterize boundedness and the essential norm of differences Cφ1,ψ1 − Cφ2,ψ2 under
more general assumptions on the weights. The estimates we obtain in this note differ
from the conditions given in [12]. Otherwise for ψ1 = ψ2 = 1 we get exactly the result
of [6].

II. Notations, definitions and auxiliary results

For notation and general information on composition operators see the excellent mono-
graphs [8, 19]. Let us denote the closed unit ball of H∞v by B∞v . When dealing with
weighted Bergman spaces of infinite order an important tool is the so called associated
weight introduced by Anderson and Duncan in [1] and thoroughly studied by Bierstedt,
Bonet and Taskinen in [3]. For a weight v the associated weight ṽ is given by

ṽ(z) :=
1

sup {|f(z)|; f ∈ B∞v }
=

1
‖δz‖H∞′v

, z ∈ D ,

where δz denotes the point evaluation of z. By [3] the associated weights have the
following properties:

(i) ṽ is continuous,
(ii) ṽ ≥ v > 0,
(iii) for every z ∈ D we can find fz ∈ B∞v such that fz(z) = 1

ṽ(z) .

A weight v is called essential if there is a constant C > 0 such that

v(z) ≤ ṽ(z) ≤ Cv(z) for every z ∈ D .

Examples of essential weights as well as conditions when weights are essential may be
found in [3, 4, 5]. We are especially interested in radial weights, i.e. weights which
satisfy v(z) = v(|z|) for every z ∈ D. If a radial weight v satisfies the Lusky condi-
tion (L1) (due to Lusky [13])

(L1) inf
k

v(1− 2−k−1)
v(1− 2−k) > 0 ,

then v is essential.
We say that a weight v is typical, if it is radial, non-increasing with respect

to |z| and lim|z|→1− v(z) = 0. In the sequel every radial weight is assumed to be
non-increasing. In order to treat differences of composition operators we need some
geometric data. Recall that for any z ∈ D, ϕz is the Möbius transformation of D which
interchanges the origin and z, namely, ϕz(w) = z−w

1−zw , w ∈ D. The pseudohyperbolic
distance ρ(z, w) for z, w ∈ D is defined by ρ(z, w) = |ϕz(w)| =

∣∣∣ z−w1−zw
∣∣∣ .

An operator T ∈ L(E,F ) from a Banach space E to the Banach space F
is called compact if it maps the closed unit ball of E onto a relatively compact
set in F . The essential norm of a continuous linear operator T is defined by
‖T‖e := inf {‖T − K‖; K is compact}, i.e. the essential norm is the distance to the
compact operators. Finally, let us list up some auxiliary results we need for proving
our results.
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Lemma 1 (Bonet, Lindström, Wolf, [6])
Let v be a radial weight satisfying the Lusky condition (L1) and let f ∈ H∞v .

Then there exists a constant Cv (depending on the weight v) such that

|f(z)− f(p)| ≤ Cv||f ||vmax
{
1

v(z)
,
1
v(p)

}
ρ(z, p)

for all z, p ∈ D.

Theorem 2 (Contreras, Hernández-Dı́az, [7])
Let v and w be weights and φ : D → D and ψ : D → C be analytic. Then the

operator Cφ,ψ : H∞v → H∞w is bounded if and only if supz∈D |ψ(z)| w(z)
ṽ(φ(z)) <∞.

III. Continuity and essential norm of differences of weighted
composition operators

First, recall that the operator Cφ1,ψ1 − Cφ2,ψ2 : H
∞
v → H∞w is bounded if and only if

sup
z∈D

w(z) sup
{
|ψ1(z)f(φ1(z))− ψ2(z)f(φ2(z))|; f ∈ B∞v

}
<∞ .

Proposition 3

Let v and w be weights such that v is radial and satisfies (L1). Then Cφ1,ψ1 −
Cφ2,ψ2 : H

∞
v → H∞w is bounded if and only if

(i) supz∈D w(z) min
{
|ψ1(z)|, |ψ2(z)|

}
ρ
(
φ1(z), φ2(z)

)
max

{
1

ṽ(φ1(z)
, 1
ṽ(φ2(z))

}
<∞ ,

(ii) supz∈D
∣∣ψ1(z)− ψ2(z)

∣∣w(z) max{
1

ṽ(φ1(z))
, 1
ṽ(φ2(z))

}
<∞ .

Proof. We suppose that the operator Cφ1 − Cφ2 is bounded, i.e.

M = sup
z∈D

w(z) sup
{
|ψ1(z)f(φ1(z))− ψ2(z)f(φ2(z))|; f ∈ B∞v

}
<∞ .

Let us start with proving condition (i) indirectly. W.l.o.g. we can find a sequence
(zn)n∈N ⊂ D such that

w(zn)min
{
|ψ1(zn), |ψ2(zn)|

}
ρ
(
φ1(zn), φ2(zn)

)
max

{
1

ṽ(φ1(zn))
,

1
ṽ(φ2(zn))

}
≥ n .

We fix n ∈ N and distinguish the following cases:
First, we assume max

{
1

ṽ(φ1(zn)) ,
1

ṽ(φ2(zn))

}
= 1

ṽ(φ1(zn)) . Then there is a function

fn ∈ B∞v such that |fn(φ1(zn))| = 1
ṽ(φ1(zn)) . Next, we put hn(z) := fn(z)ϕφ2(zn)(z)

for every z ∈ D. Obviously hn belongs to B∞v . This yields

M ≥ w(zn)
∣∣ψ1(zn)hn(φ1(zn))− ψ2(zn)hn(φ2(zn))

∣∣
≥ w(zn)

∣∣ψ1(zn)
∣∣ ∣∣fn(φ1(zn))

∣∣ ρ(φ1(zn), φ2(zn)
)

≥ w(zn) min
{
|ψ1(zn)| , |ψ2(zn)|

} ∣∣∣ 1
ṽ(φ1(zn))

∣∣∣ ρ(φ1(zn), φ2(zn)
)

≥ n .
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Secondly, we suppose max
{

1
ṽ(φ1(zn)) ,

1
ṽ(φ2(zn))

}
= 1

ṽ(φ2(zn)) . Choosing fn ∈ B∞v
such that |fn(φ2(zn))| = 1

ṽ(φ2(zn)) we now set hn(z) := fn(z)ϕφ1(zn))(z) for every z ∈ D
and get analogously to the previous case

M ≥ w(zn)min
{
|ψ1(zn)| , |ψ2(zn)|

} ∣∣∣ 1
ṽ(φ2(zn))

∣∣∣ ρ(φ1(zn), φ2(zn)
)
≥ n .

Joining both cases, for every n ∈ N we obtain

M ≥ w(zn) min
{
|ψ1(zn)| , |ψ2(zn)|

}
ρ
(
φ1(zn), φ2(zn)

)
max

{
1

ṽ(φ1(zn)
,

1
ṽ(φ2(zn))

}
≥ n,

which is a contradiction.
It remains to show (ii). Fix z ∈ D and consider the following cases:
First, we suppose min

{
|ψ1(z)| , |ψ2(z)|

}
= |ψ1(z)| and select fz ∈ B∞v such that

|fz(φ2(z))| ṽ(φ2(z)) = 1. Hence an application of Lemma 1 gives

w(z) |ψ1(z)− ψ2(z)|
1

ṽ(φ2(z))
= w(z) |ψ2(z)− ψ1(z)| |fz(φ2(z))|

≤ w(z) |ψ2(z)fz(φ2(z))− ψ1(z)fz(φ1(z))|

+ w(z) |ψ1(z)fz(φ1(z))− ψ1(z)fz(φ2(z))|

≤ M + w(z) |ψ1(z)| |fz(φ2(z))− fz(φ1(z))|

≤ M + Cvw(z) min
{
|ψ1(z)|, |ψ2(z)|

}
ρ
(
φ1(z), φ2(z)

)
× max

{
1

ṽ(φ1(z))
,

1
ṽ(φ2(z))

}
.

Secondly, let min
{
|ψ1(z)|, |ψ2(z)|

}
= |ψ2(z)|. Choose fz ∈ B∞v with

|fz(φ1(z))| ṽ(φ1(z)) = 1. Proceeding as in the previous case we get

w(z)
∣∣ψ1(z)− ψ2(z)

∣∣ 1
ṽ(φ1(z))

≤ M + Cvw(z)min
{
|ψ1(z)| , |ψ2(z)|

}
ρ
(
φ1(z), φ2(z)

)
× max

{
1

ṽ(φ1(z))
,

1
ṽ(φ2(z))

}
.

Joining both cases and using (i), we can deduce condition (ii).
For the converse fix f ∈ B∞v and z ∈ D and distinguish the following cases:
If min

{
|ψ1(z)| , |ψ2(z)|

}
= |ψ1(z)|, using Lemma 1 yields
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∣∣ψ1(z)f(φ1(z))− ψ2(z)f(φ2(z))
∣∣ ≤ ∣∣ψ1(z)

∣∣ ∣∣f(φ1(z))− f(φ2(z))
∣∣

+
∣∣ψ1(z)− ψ2(z)

∣∣ ∣∣f(φ2(z))
∣∣

≤ Cv |ψ1(z)| ρ
(
φ1(z), φ2(z)

)
× max

{
1

v(φ1(z))
,

1
v(φ2(z))

}
+

∣∣ψ1(z)− ψ2(z)
∣∣ 1
v(φ2(z))

≤ Cv min
{
|ψ1(z)| , |ψ2(z)|

}
ρ
(
φ1(z), φ2(z)

)
× max

{
1

v(φ1(z))
,

1
v(φ2(z))

}
+

∣∣ψ1(z)− ψ2(z)
∣∣ max{

1
v(φ1(z))

,
1

v(φ2(z))

}
.

In case min
{
|ψ1(z)|, |ψ2(z)|

}
= |ψ2(z)| we proceed analogously to get

sup
z∈D

∣∣ψ1(z)f(φ1(z))− ψ2(z)f(φ2(z))
∣∣ <∞ .

From this we conclude that the operator is bounded if the above conditions are satis-
fied. �

Next, we give an example of non-bounded operators Cφ1,ψ1 and Cφ2,ψ2 such that
the difference is bounded.

Example 4 Choose w(z) = v(z) = 1 − |z| = ṽ(z), φ1(z) = z+1
2 and φ2(z) = z+1

2 +
t(z − 1)3 for every z ∈ D such that t is real and |t| so small that φ2 maps D into D
as well as ψ1(z) = ψ2(z) = 1

1−z for every z ∈ D. Obviously v and w are radial
weights and v has condition (L1). Moreover the functions ψ1 and ψ2 belong to the
space H∞w . By [7] Proposition 3.1 Cφ1,ψ1 is not bounded since for z = r ∈ R we have
|ψ1(r)| w(r)

ṽ(φ1(r))
= 2

1−r → ∞ if r → 1. Analogously we can show that Cφ2,ψ2 is not

bounded. By [15] Example 1 we know ρ(φ1(z), φ2(z)) ≤ |t|
δ |z − 1| < ∞, where δ is a

constant. This yields

sup
z∈D
|ψ1(z)|

w(z)
v(φ1(z))

ρ(φ1(z), φ2(z)) ≤ sup
z∈D

1
|1− z|

1− |z|
1− | z+1

2 |
|t|
δ
|z − 1| <∞

and sup
z∈D
|ψ1(z)− ψ2(z)|

w(z)
v(φ1(z))

= 0 as well as

sup
z∈D
|ψ1(z)|

w(z)
ṽ(φ2(z))

ρ(φ1(z), φ2(z)) ≤ sup
z∈D

1
|1− z|

1− |z|
1− | z+1

2 + t(z − 1)3|
|t|
δ
|z − 1| <∞

and sup
z∈D
|ψ1(z)− ψ2(z)|

w(z)
v(φ2(z))

= 0.

Hence the corresponding difference Cφ1,ψ1 − Cφ2,ψ2 is bounded.
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Theorem 5

Let v and w be radial weights such that v is typical and satisfies the Lusky
condition (L1). Let ψ1, ψ2 ∈ H∞w such that there are constants α, β > 0 with

α ≤ |ψ1(z)
ψ2(z)
| ≤ β for every z ∈ D. If φ1, φ2 : D → D are analytic maps such that

||φ1||∞ = ||φ2||∞ = 1 and Cφ1,ψ1 , Cφ2,ψ2 : H
∞
v → H∞w both are bounded, then the

essential norm ‖Cφ1,ψ1 − Cφ2,ψ2‖e is equivalent to the maximum of the following ex-
pressions:

(i) lim sup|φ1(z)|→1−
∣∣ψ1(z)

∣∣ ρ(φ1(z), φ2(z)
)
max

{
1

ṽ(φ1(z))
, 1
ṽ(φ2(z))

}
,

(ii) lim sup|φ2(z)|→1−
∣∣ψ2(z)

∣∣ ρ(φ1(z), φ2(z)
)
max

{
1

ṽ(φ1(z))
, 1
ṽ(φ2(z))

}
,

(iii) lim supmin{|φ1(z)|,|φ2(z)|}→1−w(z)
∣∣ψ1(z)− ψ2(z)

∣∣max{
1

ṽ(φ1(z))
, 1
ṽ(φ2(z))

}
.

Proof. First we want to prove that there is a constant C > 0 such that
Cmax{(i), (ii), (iii)} ≤ ‖Cφ1,ψ1 − Cφ2,ψ2‖e. Let us start with considering (i).

(i) Let (zn)n ∈ D be a sequence with |φ1(zn)| → 1 such that

lim
n
|ψ1(zn)|w(zn)max

{
1

ṽ(φ1(zn))
,

1
ṽ(φ2(zn))

}
ρ
(
φ1(zn), φ2(zn)

)
= lim sup
|φ1(z)|→1−

w(z)|ψ1(z)| ρ
(
φ1(z), φ2(z)

)
max

{
1

ṽ(φ1(z))
,

1
ṽ(φ2(z))

}
.

In case max
{

1
ṽ(φ1(zn)) ,

1
ṽ(φ2(zn))

}
= 1

ṽ(φ1(zn)) , since |φ1(zn)| → 1, by going to a sub-
sequence if necessary, we can use the proof of Theorem 3.1 in [10] to find functions
(gn)n ∈ H∞ such that

∞∑
n=1

∣∣gn(z)∣∣ ≤ 1 for all z ∈ D,

and gn(φ1(zn)) > 1 − (12)n for every n. Then limn |gn(φ1(zn))| = 1. In the sequel
we want to explain roughly how to construct these functions following the proof of
Theorem 3.1 in [10].

First we put k(z) := z+1
2 for every z ∈ D. Then k is holomorphic on D and

continuous on D such that k(1) = 1 and |k| < 1 on D\{1}. Next we consider u(z) :=
z−1
2 as well as un(z) := u(z)

1
n for every z ∈ D. Each un is holomorphic on D and

continuous on D such that ‖un‖∞ = 1, un(1) = 0 and |un(z)| → 1 for every z ∈ D.
By induction we can find two increasing sequences (ml)l, (jl)l ⊂ N, a sequence (cl)l of
complex numbers with |cl| < 1 for every l ∈ N and a subsequence (φ(zl))l of (φ(zn))n
such that

sup
z∈D

N∑
l=1

∣∣(clkmlujl)(z)
∣∣ < 1 for every N ∈ N and

cN
(
kmNujN

)(
φ(zN )

)
> 1− 1

2N
for every N ∈ N.

Putting gN (z) := (cNkmNujN )(z) for every z ∈ D and for every N ∈ N, we obtain the
functions above. For more details we refer the reader to [10].
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For every n we can also find fn ∈ B∞v with fn(φ1(zn)) = 1
ṽ(φ1(zn)) . Set

hn(z) := gn(z) ϕφ2(zn)(z) fn(z). Thus, hn ∈ H∞v with ||hn||v ≤ 1. Since the stan-
dard basis (en)n for c0 tends weakly to zero, so does (hn)n. Now let K : H∞v → H∞w
be a compact operator. Then limn→∞ ||Khn||w = 0. For each n,

||ψ1Cφ1 − ψ2Cφ2 −K|| ≥ ||(ψ1Cφ1 − ψ2Cφ2)hn||w − ||Khn||w,

and thus we conclude that

||ψ1Cφ1 − ψ2Cφ2 −K|| ≥ lim sup
n
||ψ1(hn ◦ φ1)− ψ2(hn ◦ φ2)||w

≥ lim sup
n

w(zn)|ψ1(zn)hn(φ1(zn))− ψ2(zn)hn(φ2(zn))|

= lim sup
n

w(zn)|ψ1(zn)||gn(φ1(zn))||ϕφ2(zn)(φ1(zn)) fn(φ1(zn))|

= lim sup
n
|ψ1(zn)|

w(zn)
ṽ(φ1(zn))

ρ(φ2(zn), φ1(zn))

Now, let us assume max
{

1
ṽ(φ1(zn)) ,

1
ṽ(φ2(zn))

}
= 1

ṽ(φ2(zn)) . If |φ2(zn)| �→ 1 there are
only finitely many n for which this is the case, since v is typical und |φ1(zn)| → 1.
Then these n′s can be omitted and we have the first case. If |φ2(zn)| → 1, analogously
to the previous case, choose functions (gn)n ∈ H∞ with

∞∑
n=1

|gn(z)| ≤ 1 for all z ∈ D,

and limn |gn(φ2(zn))| = 1. For every n we select fn ∈ B∞v such that fn(φ2(zn)) =
1

ṽ(φ2(zn)) and set hn(z) := gn(z) ϕφ1(zn)(z) fn(z). Proceeding in the same way as above

and taking into account that by assumption α ≤ |ψ1(zn)|
|ψ2(zn)| ≤ β for every n ∈ N we get

‖ψ1Cφ1 − ψ2Cφ2 −K‖ ≥ lim sup
n
|ψ2(zn)|

w(zn)
ṽ(φ2(zn))

ρ
(
φ1(zn), φ2(zn)

)
≥ 1
β
lim sup

n
|ψ2(zn)|

|ψ1(zn)|
|ψ2(zn)|

w(zn)
ṽ(φ1(zn))

ρ
(
φ1(zn), φ2(zn)

)
=
1
β
lim sup

n
|ψ1(zn)|

w(zn)
ṽ(φ2(zn))

ρ
(
φ1(zn), φ2(zn)

)
.

Joining both cases we get (i).
(ii) follows in an analogous way.
(iii) If ρ

(
φ1(z), φ2(z)

)
→ σ �= 0, when |φ1(z)| → 1 and |φ2(z)| → 1, then

(iii) follows from (i) and (ii). Therefore we can assume that ρ
(
φ1(z), φ2(z)

)
→ 0

if |φ1(z)| → 1 and |φ2(z)| → 1. Let (zn)n be a sequence with |φ1(zn)| → 1 and
|φ2(zn)| → 1 such that

lim
n
w(zn)

∣∣ψ1(zn)− ψ2(zn)
∣∣max{

1
ṽ(φ1(zn))

,
1

ṽ(φ2(zn))

}

= lim sup
min{|φ1(z)|,|φ2(z)|}→1

w(z)
∣∣ψ1(z)− ψ2(z)

∣∣max{
1

ṽ(φ1(z))
,

1
ṽ(φ2(z))

}
.
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If max
{

1
ṽ(φ1(zn)) ,

1
ṽ(φ2(zn))

}
= 1

ṽ(φ1(zn)) we choose (fn)n and (gn)n as in the first case
in the proof of (i) and set hn(z) := gn(z)fn(z). Then hn ∈ B∞v and hn → 0 weakly in
H∞v . Take a compact operator K : H∞v → H∞w . Hence limn ‖Khn‖w = 0. Thus we
obtain

‖ψ1Cφ1 − ψ2Cφ2 −K‖ ≥ lim sup
n

w(zn)
∣∣ψ1(zn)hn(φ1(zn))− ψ2(zn)hn(φ2(zn))

∣∣
≥ lim sup

n
w(zn)

∣∣ψ1(zn)− ψ2(zn)
∣∣∣∣hn(φ1(zn))

∣∣
− lim sup

n
w(zn)

∣∣ψ2(zn)
∣∣∣∣hn(φ1(zn))− hn(φ2(zn))

∣∣ .
Now, if min {|ψ1(z), |ψ2(z)|} = |ψ1(zn)| take into account that by assumption
|ψ1(zn)|
|ψ2(zn)| ≥ α. Using Lemma 1 and the boundedness of Cφ1,ψ1 this yields

lim sup
n

w(zn)
∣∣ψ2(zn)

∣∣ ∣∣hn(φ1(zn))− hn(φ2(zn))
∣∣

≤ 1
α
lim sup

n
w(zn)

∣∣ψ1(zn)
∣∣ ρ(φ1(zn), φ2(zn)

) 1
ṽ(φ1(zn))

= 0 .

If min
{
|ψ1(z), |ψ2(z)|

}
= |ψ2(zn)|, then obviously

lim sup
n

w(zn)|ψ2(zn)||hn(φ1(zn))− hn(φ2(zn))| = 0 .

Next we assume max
{

1
ṽ(φ1(zn)) ,

1
ṽ(φ2(zn))

}
= 1

ṽ(φ1(zn)) and show the claim com-
pletely analogously to the previous case.

We now prove that there is a constant C∗ > 0 such that max{(i), (ii), (iii)} ≤
C∗‖Cφ1,ψ1 − Cφ2,ψ2‖e. Take the sequence of linear operators Ck : H(D) → H(D),
k ∈ N, defined by Ckf(z) = f( k

k+1z), which are continuous for the compact open
topology and Ckf → f uniformly on every compact subset of D and the operators
Ck : H∞v → H∞v are well-defined and compact with ||Ck|| ≤ 1.

For fixed k ∈ N we have,

||ψ1Cφ1 − ψ2Cφ2 ||e ≤ ||(ψ1Cφ1 − ψ2Cφ2)(Id− Ck)||.

Let f ∈ B∞v and fix an arbitrary r ∈ (0, 1). Set gk := (Id − Ck)f , so gk ∈ H∞v and
||gk||v ≤ 2. Then∥∥ψ1Cφ1 − ψ2Cφ2

∥∥
e
≤ sup
||f ||v≤1

∥∥(ψ1Cφ1 − ψ2Cφ2)gk
∥∥
w

≤ sup
||f ||v≤1

sup
{z;|φ1(z)|>r}

w(z)
∣∣ψ1(z)gk(φ1(z))− ψ2(z)gk(φ2(z))

∣∣
+ sup
||f ||v≤1

sup
{z;|φ2(z)|>r}

w(z)|ψ1(z)gk(φ1(z))− ψ2(z)gk(φ2(z))|

+ sup
||f ||v≤1

sup
{z;|φ1(z)|≤r,|φ2(z)|≤r}

w(z)
∣∣ψ1(z)gk(φ1(z))− ψ2(z)gk(φ2(z))

∣∣
=: Ik,r + Jk,r + Lk,r.
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To estimate the first term Ik,r, for z ∈ D with |φ1(z)| > r we use Lemma 1 as in the
proof of Theorem 2 to get,

w(z)
∣∣ψ1(z)gk(φ1(z))− ψ2(z)gk(φ2(z))

∣∣
≤ w(z)

∣∣ψ1(z)
∣∣ ∣∣gk(φ1(z))− gk(φ2(z))

∣∣
+ w(z)

∣∣ψ1(z)− ψ2(z)
∣∣ ∣∣gk(φ2(z))

∣∣
≤ 2Cv

∣∣ψ1(z)
∣∣w(z)ρ(φ1(z), φ2(z)

)
max

{
1

ṽ(φ1(z))
,

1
ṽ(φ2(z))

}
+ w(z)

∣∣ψ1(z)− ψ2(z)
∣∣ ∣∣gk(φ2(z))

∣∣.
Analogously we can estimate the term Jk,r.
The sequence of operators (Id − Ck)k satisfies limk(Id − Ck)g = 0 for each g in

H(D), and the space H(D) endowed with the compact open topology co is a Frećhet
space. By the Banach-Steinhaus theorem, (Id − Ck)k converges to zero uniformly on
the compact subsets of (H(D), co). Since the closed unit ball of H∞v is a compact
subset of (H(D), co) we conclude that

lim
k

sup
||f ||v≤1

sup
|ξ|≤r
|((Id− Ck)f)(ξ)| = 0.

If |φ2(z)| ≤ r in the term Ik,r, then we conclude that

lim
r→1

lim sup
k

Ik,r ≤ 2 lim sup
|φ1(z)|→1

w(z)
|ψ1(z)|
ṽ(φ1(z))

ρ
(
φ1(z), φ2(z)

)
.

In the case |φ2(z)| > r, we have that

lim
r→1

lim sup
k

Ik,r ≤ 2 lim sup
min{|φ1(z)|,|φ2(z)|}→1

w(z)
∣∣ψ1(z)− ψ2(z)

∣∣max{
1

ṽ(φ1(z))
,

1
ṽ(φ2(z))

}
+ 2 lim sup

|φ1(z)|→1
w(z)|ψ1(z)| ρ

(
φ1(z), φ2(z)

)
max

{
1

ṽ(φ1(z))
,

1
ṽ(φ2(z))

}
.

Analogously we consider the cases |φ1(z)| ≤ r and |φ1(z)| > r in the term Jk,r.
Since ψ1, ψ2 ∈ H∞w , we have that limr→1 lim supk Lk,r = 0, and the statement

follows. �
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