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José I. Burgos
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Abstract

Let X be the base locus of a linear system L of hypersurfaces in Pr(C). In this

paper it is showed that the existence of linear syzygies for the ideal of X has

strong consequences on the fibres of the rational map associated to L. The case

of hyperquadrics is particularly addressed. The results are applied to the study

of rational maps and to the Perazzo’s map for cubic hypersurfaces.

1. Introduction

Let X be the base locus of a linear system of hypersurfaces in Pr(C). One can con-
sider X as a projective scheme and the linear system is called special if X is smooth
and irreducible. One also considers the rational map Φ induced by the linear system
and studies the fibres of this map. It turns out that, in many cases, such fibres are
linear. For instance when X has sufficiently independent linear syzygies. So that one
can also consider the linear system special when this fact occurs.

Varieties with many “good” linear syzigies were recently considered by many
authors (see [2, 6, 13, 14, 16]) for different goals. In this paper it is showed that the
existence of linear syzigies has strong consequences on the fibre of Φ also in the cases
in which the fibres are not linear (Theorem 1). On the other hand, when the Koszul
syzygies of X are generated by the linear ones, Φ is completely and easily described
(Proposition 3) as it was shown by Vermeire in [16]. In § 4 some applications of these
results are given to the study of rational maps.

This work is within the framework of the national research project “Geometry on Algebraic Varie-
ties” Cofin 2006 of MIUR.

Keywords: Quadrics, linear syzygies, rational maps.
MSC2000: Primary 14E05, 15A15; Secondary 14M12.
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In § 5 linear systems of hyperquadrics are considered. By using an old theorem of
Degoli (see Theorem 2 and [3]) and a recent theorem of Landsberg (see [8]) it is possible
to get other results about the fibres of Φ (Theorem 3). An application of Theorem 3
in Corollary 3 proves that the fibres of the Perazzo’s map of a cubic hypersurface with
vanishing Hessian, not a cone, are linear, yielding a shorter proof of the original result
of Perazzo (see [9]).

Acknowledgements. I wish to thank F. Russo very much for many helpful conver-
sations on linear systems of hyperquadrics and also for bringing to my attention the
applications to Perazzo’s map.

2. Notation

Pr : r-dimensional projective space on C
x : column coordinates of a point in Pr

Mt : transpose of the matrix M
L : vector subspace of H0(Pr,OPr(d)) for some d ≥ 2
α : dim(L)− 1
|L| : P(L)
X : base locus of Φ
Φ : rational map from Pr to Pα := P(L∗), induced by the linear system |L| in Pr

Z : Im(Φ)
Φ−1(E) : for any subset E ⊆ Pα it is the closure in Pr of the set of points

P ∈ Pr\X such that Φ(P ) ∈ E
ΦP : for any P ∈ Pr\X it is Φ−1(Φ(P )) i.e. the closure in Pr of the fibre of Φ

which is contained in (Pr\X)
|L| is homaloidal if Φ−1(Q) is a point for any generic point Q ∈ Z
|L| is subhomaloidal if Φ−1(Q) is a linear space for any generic point Q ∈ Z
|L| is completely subhomaloidal if Φ−1(Q) is a linear space for any point Q ∈ Z
ρ(P ) : rank of the Jacobian matrix of |L| evaluated at P ∈ Pr

ρ : rank of the Jacobian matrix of |L| evaluated at the generic point of Pr

Λ : vector subspace of H0(Pr,OPr(2))
Con(P ) : linear space in Pr consisting of all points which are conjugated to P

∈ Pr with respect to all quadrics of Λ
LP : linear space in Pr generated by P ∈ Pr and Con(P )
Ann(P ) : linear subsystem of Λ given by quadrics which are singular at a point

P ∈ Pr

Singloc(Λ′) : intersection of all singular loci of quadrics belonging to a subspace
Λ′ ⊆ Λ

BaselocΛ∗(F⊥) : subscheme of Pr defined by equations fk+1 = · · · = fα = 0
where Λ = {f0, ..., fα} is a linear system of quadrics in Pr and F is the linear space in
Pα defined by: yk+1 = · · · = yα = 0 where y0, ...., yα are the coordinates in Pα

Sm(W ) : set of smooth points of a scheme W
Wred : reduced structure of a scheme W.
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3. Linear systems and linear syzygies

Let |L| be a linear system in Pr. We fix a base f0, f1, ..., fα for L in order to define
a rational map Φ : Pr ��� Pα. We always assume that Φ is not constant. Let X be
the base locus of Φ. Let M = (ϕi,j) = [M1|M2] be the (α + 1, q′) matrix of syzygies
of the ideal IX of X. M1 is the (α + 1, q) submatrix of the linear syzygies. We define
rk(M1) as rk[M1(x)] for generic x ∈ Pr. In this section we assume that M1 �= 0 for
any considered |L|. By construction Pα is the linear span of Z.

For any point of Pα whose coordinates are a we put (see also [6]):

Wa =
{
x ∈ Pr

∣∣ α∑
i=0

aiϕij(x) = 0 ∀j = 1, ..., q′
}

W 1
a =

{
x ∈ Pr

∣∣ α∑
i=0

aiϕij(x) = 0 ∀j = 1, ..., q
}
.

To any linear syzygy we can associate a (α+ 1, r + 1) matrix Bj j = 1, ..., q such
that (Bjx)tF (x) = 0 where F (x) is the column vector of coordinates: f0(x), ..., fα(x).
In this notation we have:

W 1
a =

{
x ∈ Pr|atBjx = 0 ∀j = 1, ..., q} and we define:

E(x)=
{
y ∈ Pα|y

t
Bjx = 0 ∀j = 1, ..., q}

N =
{
y ∈ Pα|y

t
Bj = 0 ∀j = 1, ..., q} and

Ms=
{
x ∈ Pr|rk[M1(x)] ≤ s}.

Moreover for any point P ≡ x ∈ Pr we can consider the linear subsystem
LP = 〈B1x, ..., Bqx〉 ⊆ L such that dim(LP ) = rk[M1(x)]. Note that L = LP ⊕L′P and
|LP | = E(x)∗ is the dual space of E(x) in the dual projective space of Pα.

Remark 1 For any a ∈ N W 1
a = Pr. For any x ∈ M0 [E(x)] = Pα. For any

x∈ Pr dim[E(x)] = α − rk[M1(x)] and N ⊆ E(x). For any x∈ Pr\X, F (x) ∈ E(x)
so that if rk(M1) = α then F (x) = E(x) for generic x∈ Pr\X.

The previous defined linear spaces in Pr and the matrix M are linked by the
following propositions. First of all we have the

Lemma 1

Let |L| be a linear system in Pr. Let Φ : Pr ��� Pα be the rational map induced
by |L|. Let Q be any point in Z, whose coordinates are a, such that Q = Φ(P ). Then
ΦP ⊆ Wa ⊆ W 1

a .

Proof. We can always assume that a ≡ (1 : 0 : 0 : · · · : 0).
ΦP = {x ∈ Pr|f1(x) = f2(x) = · · · = 0, f0(x) �= 0} while
Wa = {x ∈ Pr|ϕ0j(x) = 0 ∀j = 1, ..., q′}. As :
α∑

i=0

ϕij(x)fi(x) ≡ 0 ∀j = 1, ..., q′ we have that for any h such that

f1(h) = f2(h) = · · · = 0, f0(h) �= 0, we have : ϕ0j(h) = 0 ∀j = 1, ..., q′.
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Hence {x ∈ Pr|f1(x) = f2(x) = · · · = 0, f0(x) �= 0} ⊆ Wa and ΦP ⊆ Wa = Wa.
The other inclusion is obvious. �

Then we can consider the (α + 1, r + 1) Jacobian matrix J|x of Φ, evaluated at
a point P ≡ x ∈ Pr\X, the induced linear map and its dual in the following exact
sequences:

0 → ker(J|x) → Cr+1 → Cα+1 → coker(J|x) → 0
J|x

0 → ker[(J|x)t] → (Cα+1)∗ → (Cr+1)∗ → coker[(J|x)t] → 0
(J|x)t .

If we break down the sequences and we consider the linear maps induced by the
matrices Bj , we can also consider the following non commutative diagram, for any
j = 1, ..., q:

0 → ker(J|x) → Cr+1 → Im(J|x) → 0
↓ Bj ↓ (Bj)t

0 → ker[(J|x)t] → (Cα+1)∗ → Im[(J|x)]t → 0 .

Now we have the following:

Proposition 1

Let P ≡ x be any point in Pr\X, let P ′ = Φ(P ) ≡ a. Then the image of the vector
subspace LP = 〈B1x, ..., Bqx〉 ⊆ L under (J|x)t is such that W 1

a is the projectivization

of its dual, moreover W 1
a is the tangent space to the base locus of |LP | at P.

Proof. By the syzygies properties we have that (Bjx)tF (x) = 0 for any j, where F (x) is
the column vector of the coordinates f0(x), ..., fα(x). By taking the partial derivatives
we get:

(J|x)tBjx+(Bj)tF (x) = 0 ∀j = 1, ..., q (∗)
so that for any j = 1, 2, ..., q we have: (J|x)tBjx = −(Bj)ta by (∗). Hence the
projectivization of the dual of the image of LP is the linear space in Prdefined by:
xt(Bj)ta = 0, j = 1, 2, ..., q, i.e. it is W 1

a .
Now let us recall that β := dim(LP ) = rk[M1(x)] ≥ 1 because we are assuming

M1 �= 0.We can always choose a coordinate system in Pα such that LP = 〈f0, ..., fβ−1〉,
hence 〈B1x, ..., Bqx〉 is generated by the first β elements of the standard base of
Cα+1 : = 〈[1, 0, ..., 0]t, [0, 1, 0, ..., 0]t, ..., [0, ..., 1, ..., 0]t〉. In this case the linear space
W 1

a is defined by hyperplanes whose coefficients are the first β rows of J|x and they
define exactly the tangent space to the base locus of |LP | at P. �

Corollary 1

If rk(M1) = α then |L| is subhomaloidal.

Proof. In fact, for generic P ≡ x ∈ Pr\X, we have that the base locus of |LP | is
reducible into X and ΦP , hence it coincides with ΦP locally near P and it is smooth
at P. By the previous proposition we have W 1

a = TP (ΦP ), where Φ(P ) ≡ a. Hence
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W 1
a = ΦP , because we always have W 1

a ⊇ ΦP by Lemma 1. This means that the
generic fibre of Φ is a linear space of Pr. �

From the above corollary we have that rk(M1) = α implies that |L| is subhoma-
loidal. About the converse we have the following (essentially in [6]):

Proposition 2

Let |L| be a linear system in Pr. Let Φ : Pr ��� Pα be the rational map induced
by |L|. Assume that |L| is subhomaloidal and that, for generic P ∈ Pr, W 1

a = ΦP with
Φ(P ) ≡ a. Then rk[M1] = α.

Proof. We proceed by contradiction. Let us assume that, for generic P , rk[M1(P )] < α.
As the union of W 1

a covers Pr we have also that, for fixed P and a and for generic
x0 ∈ W 1

a , rk[M1(x0)] < α. Then there are at least two rows inM1(x0) which are linear
combination of the others. By choosing another base for L we can always suppose that
the first two rows of M1(x0) are 0, i.e. ϕ0j(x0) = ϕ1j(x0) = 0 ∀j = 1, ..., q.

Let us consider the points a(t) ≡ (1 : t : 0 : · · · : 0) in Pα. Note that ∀t ∈ C
x0 ∈ W 1

a(t). For generic t ∈ C we have that a(t) is generic in Pα. Hence the fibre over
a(t) is W 1

a(t) for generic t and Φ(x0) = a(t) for such t. But this is not possible. �

Remark 2 Note that the previous propositions tell us that rk[M1] = α if and only if
M1 �= 0 and the generic fibre of Φ is W 1

a (hence a linear space). However |L| might be
subhomaloidal with rk[M1] < α, in this case W 1

a � ΦP .

Now we want to prove the following:

Theorem 1

Let |L| be a linear system in Pr. Let Φ : Pr ��� Pαbe the rational map induced
by |L|. Let P ≡ x be any point in Pr\X and let us consider WE(x) : = {x′ ∈ Pr|
E(x′) ⊇ E(x)}. Then WE(x) is a linear space of Pr, contained in Φ−1(E(x)), such that
the restriction of Φ to it is dominant over E(x) ∩ Z.

Proof. Let us consider a point P ≡ x in Pr\X such that s = rk[M1(x)] is maxi-
mal. We have dim[E(x)] = α − s and α ≥ s because E(x) ⊇ F (x). Let us consider
WE(x) = {x′ ∈ Pr| E(x′) ⊇ E(x)} = {x′ ∈ Pr| atBjx

′ = 0 ∀j = 1, ..., q for any a such
that atBjx = 0 ∀j = 1, ..., q} which is the intersection of all W 1

a for a∈ E(x), there-
fore it is a linear space, containing P. Moreover we can choose a coordinate system
in Pα such that E(x) has equations: yα−s+1 = yα−s+2 = · · · = yα = 0. In this case
WE(x) = {x′ ∈ Pr| vtBjx

′ = 0 ∀j = 1, ..., q for the first α+1−s vectors vt = [1, 0, ..., 0],
[0, 1, 0, ..., 0], [0, ..., 0, 1, 0, ..., 0] of the standard base of Cα+1}.

As s = rk(M1) we have that, for generic x′ ∈ WE(x), s = rk[M1(x′)] too and
the first α + 1 − s rows of the matrix M1(x′) are null, because x′ ∈ WE(x). It follows
that the (s, q) submatrix M1(x′)# :=M1(x′)\ (first α+ 1− s rows) has rank equal to
rk[M1(x′)] = s, i.e. it has maximal rank. Hence wtM1(x′)# = 0 implies w = 0 for any
w ∈ Cs.

As [F (x′)]tM1(x′) = 0 by the syzygies properties, we get [F (x′)#]tM1(x′)# = 0
where F (x′)# := F (x′)\ (first α+1−s coordinates). It follows that F (x′)# = 0, but it
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means that F (x′) ∈ E(x), i.e. Φ maps the generic point of WE(x) into E(x). Therefore
in Pr\X there exists an open set A ⊆ WE(x) such that A =WE(x) and Φ(A) ⊆ E(x),
so that: Φ(WE(x)) = Φ(A) ⊆ Φ(A) ⊆ E(x) = E(x). Hence: WE(x) ⊆ Φ−1(E(x)).

If the union U of all WE(x), for rk[M1(x)] = rk(M1), covers all Pr\X we are
done. If not, we can choose a point R ≡ k /∈ U, R /∈ X, such that s′ = rk[M1(k)] <
rk(M1) is maximal among points outside U (note that at some points of U rk[M1(x)]
may be less than s). We can repeat the previous argument for R and we have a
WE(k) ⊆ Φ−1(E(k)). Now WE(k) ⊆ Ms′ , because for any k′ ∈ WE(k) we have that
E(k′) ⊇ E(k), hence rk[M1(k′)] ≤ rk[M1(k)]. If dim(Ms′) = 0 we are done, if not we
can argue as in the previous case because, as WE(k) ⊆ Ms′ , all points H ≡ h of WE(k)

are such that rk[M1(h)] ≤ s′ and because rk[M1(k)] = s′ we have that rk[M1(h)] = s′

for the generic point H ≡ h of WE(k). The conclusion is that WE(k) ⊆ Φ−1(E(k)) (and
WE(k) ∩ U = ∅). Now if the union of all WE(k) is Pr\X we are done, otherwise we can
proceed by considering a point as R outside this union and so on.

Now let us consider the restriction of Φ to WE(x) and let us call it Ψ. There is an
open set in WE(x) such that for any x′ belonging to it E(x′) = E(x) and there is an
other open set such that for any x′ belonging to it the dimension of the fibre of Φ passing
through it is r + 1 − ρ(x′). Hence, by changing the choice of P, if necessary, we can
always assume that dim[Φ−1(E(x)] = dim[E(x)]+r+1−ρ(P ). We can always choose a
coordinate system in Pα such that LP = 〈f0, ..., fβ−1〉 where β := rk[M1(x)]; then Ψ
is defined by fβ , ..., fα and the Jacobian matrix of Ψ at P is given by the last α+1−β
rows of J|x. The rank of the submatrix of J|x given by the first β rows is cod[W 1

a ] and,
by Proposition 1, dim[W 1

a ] ≥ dim[Φ−1(E(x)], so that cod[W 1
a ] ≤ r − (dim[E(x)] + r −

ρ(P )+1) = ρ(P )−dim[E(x)]−1, because dim[Φ−1(E(x))] = dim[E(x)]+(r−ρ(P )+1).
It follows that the rank of the submatrix of J|x given by the last α + 1 − β rows is
ρ(P ) − (ρ(P ) − dim[E(x)] − 1) = dim[E(x)] + 1 at least. Hence Ψ is dominant onto
E(x) ∩ Z. �

About the linear syzygies of a variety X we recall that X is said to have the
Kd property if X is the schematically intersection of degree d forms and every Koszul
syzygy of X is generated by the linear ones. Now we have the following proposition,
which is essentially a translation in our language of some results contained in [16, 14]:

Proposition 3

Let |L| be a linear system in Pr. Let Φ : Pr ��� Pα be the rational map induced
by |L|. Let X be the base locus of |L|. Assume that X has the Kd property, then for
any P ∈ Pr\X, ΦP is a linear space of dimension r + 1 − ρ(P ) i.e. |L| is completely
subhomaloidal. Moreover ΦP =W 1

Φ(P ) and rk[M1(P )] = α for any P ∈ Pr\X.

Proof. Let us consider G := {(x, y) ∈ Pr × Pα| fi(x)yj− fj(x)yi i, j = 0, ..., α} such
that G ∩ [(Pr\X) × Pα] is the graph of Φ. Let us consider G′ := {(x, y) ∈ Pr × Pα|
y

t
Bkx = 0, k = 1, ..., q}. In our assumptions ∀i, j = 0, ..., α, with i �= j, we have that:
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⎡⎢⎢⎢⎢⎢⎣
...

−fj(x)
...

fi(x)
...

⎤⎥⎥⎥⎥⎥⎦ =
q∑

k=1
ωk

ij(x)

⎡⎢⎢⎢⎢⎢⎣
l0k(x)
...
...
...

lαk (x)

⎤⎥⎥⎥⎥⎥⎦
where lk(x) are the linear syzygies of X and ωk

ij(x) are suitable forms of degree d− 1.
Now let us consider the product with yt. We get:

fi(x)yj− fj(x)yi =
q∑

k=1
ωk

ij(x)(yt
Bkx) ∀i, j = 0, ..., α , i �= j,

therefore we have that G′ ⊆ G.
Note that G′ �= G, because in general G′ does not contain X (for instance if M0

is empty). From the inclusion G′ ⊆ G it follows that M0 ⊂ X and N = ∅ as we are
assuming that Φ is not constant. As (x, y) ∈ [(Pr\X)×Z] belongs to G′ if and only if
y = Φ(x), we get that G′∩ [(Pr\X)×Pα] = G∩ [(Pr\X)×Pα], i.e. an easy description
of the graph of Φ (and of its closure in Pr × Pα). Now let Q be any point in Z, let a
be its coordinates and let P be a point in Pr\X such that Φ(P ) = Q. ΦP ⊆ W 1

a , on
the other hand now the equations of ΦP are exactly those of W 1

a . Hence ΦP = W 1
a

and it has dimension r + 1− ρ(P ). Moreover for any P ≡ x ∈ Pr\X we have only one
Q = Φ(P ) ≡ y such that (x, y) ∈ G′, hence 0 = dim[E(x)] = α− rk[M1(x)]. �

Corollary 2

Let |L| be a linear system in Pr. Let Φ : Pr ��� Pα be the rational map induced by
|L|. Let X be the base locus of |L|. Assume that X has the Kd property. If α ≥ r+1,
(or α ≤ r with q ≥ r + 1), then Z := Im(Φ) is a determinantal variety in Pαgiven by
the vanishing of the (r + 1, r + 1) minors of a matrix of linear forms. If α ≤ r with
q ≤ r then Φ is surjective. Moreover N = ∅.
Proof. By the Proposition 3 we know that the graph of Φ is

{(x, y) ∈ Pr × Pα|y
t
Bjx = 0, j = 1, ..., q} ∩ [(Pr\X)× Pα]

so that a point Q ≡ a belongs to Z only if the linear system: atBjx = 0 ∀j = 1, ..., q
has some solution. The matrix A of this linear system is of type (q, r + 1). The Kd

property implies that q ≥ α by Propositions 2 and 3. If α ≥ r + 1 the system has
solutions if and only if rk(A) ≤ r (see also [11]). The same is true if q ≥ r+1. If α ≤ r
with q ≤ r then the system has always solutions and Φ is surjective. If N �= ∅ then it
would exists a point in Pα whose fibre would be Pr\X and this is not possible as we
always assume that Φ is not constant. �

4. Some applications and examples

In this section we want to give some applications to the study of some rational and
birational map.
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Example 1 Let X be the non minimal K3 surface of degree 7 in P4 whose ideal sheaf
has the following resolution (see [4, p. 224]):

0→ OP4(−5)⊕OP4(−4)→ OP4(−3)⊕3 → IX → 0.

The vector bundle map is given by the transpose of the following matrix:[
q1 q2 q3
l1 l1 l3

]
where qi and li are general forms of degree 2 and 1 respectively.

It is always possible to choose a coordinate system (x : y : z : w : u) in P4 such
that the three linear forms are: x, y, z, so that the ideal of X is generated by these
cubics: f0 = xq2 − yq1, f1 = xq3 − zq1, f2 = yq3 − zq2. In this case the matrix M is
the transpose of the following one:[

z −y x
q3 −q2 q1

]

and we have only one linear syzygy. Now if we consider the rational map Φ : P4 ��� P2

we have that it is surjective and the general fibre has dimension 2. By choosing coor-
dinates (a : b : c) in P2, we get the only bilinear relation: az − by + cx = 0. It follows
that N is empty and for any P ≡ (x : y : z : w : u) ∈ P4\X, rk[M1(P )] = 1 = rk(M1),
hence E(P ) is always a line: za − yb + xc = 0, WE(P ) = {P ′ ∈ P4|E(P ′) = E(P )}
is always a plane: xy − yx = xz − zx = yz − zy = 0 and W 1

Φ(P ) is always a linear
space of dimension 3. Note that the only cubic in |LP | is given by: zf0 − yf1 + xf2 =
(yz − zy)q1 − (xz − zx)q2 + (xy − yx)q3 = 0 so that it coincides with its base locus,
moreover this cubic is also Φ−1[E(P )] and it obviously contains WE(P ).

If we consider the restriction Ψ of Φ to WE(P ) � P2 we get a rational surjective
map Ψ : P2 ��� E(P ) � P1 given by a pencil of conics. In factWE(P ) cuts X along the
fixed line L : x = y = z = 0 (independent from P ) and the base locus of the following
pencil of quadrics: 〈xq2 − yq1, xq3 − zq1, yq3 − zq2〉. L is the exceptional divisor of the
blowing up at one point of the minimal model, in fact X is the projection of a minimal
degree 8 K3 surface in P5 from one of its points.

If we consider any point (a : b : c) in the target P2 the union of the fibre over it
and X is given by the intersection of the following 3 non independent quadrics:

(az − by)q1 + bxq2 − axq3 = 0
−cyq1 + (cx+ az)q2 − ayq3 = 0
−czq1 + bzq2 + (cx− by)q3 = 0.

On the other hand the fibre is contained in the hyperplane W 1
(a:b:c) of equation:

cx − by + az = 0. So that, by intersecting it with the quadrics and by eliminating L,
which is contained in X, we get that the fibre is the surface quadric whose equations
are:

cx− by + az = 0
cq1 − bq2 + aq3 = 0.

Note that this quadric is exactly W(a:b:c).
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Example 2 Let us consider the vector bundle E = OP1(1)⊕3 ⊕ OP1 over P1. The
tautological line bundle T in P(E) gives rise to a morphism whose image is a cone C
in P6 over the Segre product P1 × P2. We can choose a coordinate system (a : b : c :
d : e : f : g) in P6 such that C is given by: df − gc = bg − de = ce − bf = 0. Let
F be the linear class of a fibre in P(E), then the intersection of two generic elements
belonging to |2T −F | is a smooth degree 8 and genus 3 surface X in P6. X can be also
considered as the blow up of P2 at 8 points in general position, embedded in P6 by the
linear systems of plane quartics passing through the 8 points (see [15, 1], see also [7])

We can always assume that two fixed fibres of P(E) in P6 have equations: F1)
e = f = g = 0 and F2) b = c = d = 0. So that the intersection of two generic elements
of |2T−F | linearly equivalent to 2T−F1 and 2T−F2 is given by the following equations:

eL+ fM + gN = bL+ cM + dN = 0
eL′ + fM ′ + gN ′ = bL′ + cM ′ + dN ′ = 0
df − gc = bg − de = ce− bf = 0.

where L,M,N,L′,M ′, N ′ are general linear forms in P6 (see [15]).
It is easy to see that the matrix M1 is the following:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 −b c −d
0 0 0 0 0 e −f g
0 0 −b c −d 0 0 0
0 0 e −f g 0 0 0
b −e 0 N ′ M ′ 0 N M
−c f −N ′ 0 L′ −N 0 L
d −g −M ′ −L′ 0 −M −L 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
see also [6] and that rk(M1) = 6. Now let us consider the rational map Φ : P6 ���P6

where the generic point of the target P6 has coordinates (u : r : t : w : z : y : x).
It is well known that Φ is a birational map and its fibres are described in [15] (see
also [1] for the point of view of Mori’s theory): there is a singular degree 8, genus 5
and codimension 2 variety Y in the target P6 such that for any generic point of Y the
fibre is a line; there are 28 isolated triple point in Y such that the fibre over them is
a plane; there is a quadric Q = Φ(C) whose equations are: x = y = z = uw − rt = 0
such that any point of Q is double for Y and its fibre is a quadric.

Here we are interested by the information given by M1. By any computer algebra
system it is easy to see that for any P ∈ P6\X rk[M1(P )] ≥ 5. More precisely we
have that E(P ) is a line if and only if P ∈ C\X, otherwise E(P ) = Φ(P ). Hence
ΦP = W 1

Φ(P ) is a linear space for any P ∈ P6\C whose dimension is 1 with the 28
quoted exceptions (they correspond to 28 conics on X, becoming from the 28 lines
joining the 8 blowed up points). For any P ∈ C\X E(P ) is a line of one of the two
rulings of Q and W 1

Φ(P ) is a 3-dimensional linear space containing the fibre. This
space coincides with WE(P ) because W 1

A is constant for any point A ∈ E(P ) and the
restriction of the rational map Φ fromWE(P ) � P3 to E(P ) � P1 is induced by a pencil
of quadrics in P3 whose base locus is an elliptic quartic in X. To get the fibre over a
point A we can use the other three degree 2 syzygies: the fibre is exacly WA.
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Note that Q contains another ruling of lines but none of them can be E(P ) for
some P ∈ C\X; in fact, let l be one of these lines, the intersection of all the W 1

B � P3,
such that B ∈ l, is the vertex of the cone C, hence it is empty in P6\X and this is a
contradiction with Theorem 2. Each one of the W 1

B contains one of the elliptic quartic
quoted above. This situation is described from another point of wiew in [15, 1].

Example 3 It is known that the K3 smooth surface X of degree 9 and sectional
genus 8 in P4 has the K4 property (see [4, p. 225]) and M1 =M. IX is generated by 6
quartics and Φ : P4 ��� P5 . It is also known that Z is a smooth cubic hypersurface
(see [5]) and that Φ is birational onto Z. By Propositions 2 and 3 rk[M1(P )] = 5
for any P ∈ P4\X, G′ is given by 6 bilinear forms ytBjx = 0 j = 1, ..., 6 and for any
a∈ P5 {atBjx = 0 ∀j = 1, ..., 6} is a homogeneous linear system of 6 equations in 5
indeterminates. It has solutions if and only if the 5 maximal minors of the related
matrix are null. The variety defined by these 5 quintics in P5 is reducible into Z and
into another smooth variety Y which is exactly the locus of points in P5 for which the
fibre of Φ has positive dimension. Y is a Del Pezzo surface of degree 5 in P5 (see [5])
and the above 5 quintics in fact are broken into the product of the cubic equation of Z
and 5 quadratic forms which define exactly Y . You can verify such computations with
any computer algebra system, as Macaulay for instance.

Example 4 The above situation can also be studied by reversing Φ. Let us consider
the Del Pezzo surface Y in P5 whose ideal is generated by 5 quadratic forms so we
get a rational map Ψ : P5 ��� P4. Y has the K2 property: the 5 forms have only 5
linear syzygies and, by Propositions 2 and 3, rk[M1(P )] = 4 for any P ∈ P5\X. We
can consider G′ which is given by 5 bilinear forms and we can study the fibres of Ψ by
considering a homogeneous linear systems of 5 equations in 6 indeterminates, as in the
previous example. It is easy to see that Ψ is surjective and that every fibre over a
point Q ∈ P4 is a secant line for Y but for the points belonging to 5 disjoint lines in
P4: in these cases the fibre is a plane cutting a conic on Y .

It is very interesting that, by using linear syzygies, we can also study the restric-
tion of Ψ to any cubic hypersurface contaning Y. Let H be any smooth generic cubic
containing Y. Its equation gives rise to another bilinear equation in P5 × P4 so that
there exists a fibre of Ψ|H over a point Q ∈ P4 only if there exist solutions for the
corresponding linear system. Now this homogeneous system has 6 equations in 6 inde-
terminates and the related matrix has generic rank 5, i.e. the generic fibre of Ψ|H is a
point, in fact this map is birational (see [5]). We can also study the exceptional fibres
by looking for points for which the rank of the related matrix is strictly less than 5. In
this way we get a determinantal ideal in P4 and it is easy to see, by a computer algebra
system (see also [5]), that this ideal define exactly a smooth K3 surface X of degree 9
and sectional genus 8 which is the intersection of 6 quartics. The surface contains the 5
lines in P4 L1, ..., L5 such that for any point of these lines the fibres of Ψ are planes.
The fibres of Ψ|H are the intersections of the fibres of Ψ with H, out of H ∩ Y. For
any point the fibre is a point (as the fibres of Ψ were secant lines to Y ) but for points
belonging to X. For any Q ∈ X the fibre over Q is a line. This is obvious when Q /∈ Li,
if Q ∈ Li the fibre of Ψ over Q is a plane but the fibre of Ψ|H is a line too (recall that Y
cuts a conic on these planes) unless H contains some of these planes, but for generic H



Special linear systems and syzygies 249

it is not possible. The conclusion is that Ψ|H is a birational map for generic H (see
also [5]).

Example 5 The final part of the previous example can be generalized as follows.
Assume that X in Pr is the base locus of a r−dimensional linear system of degree d
hypersurfaces with ρ = r and assume also that X has the Kd property, then the generic
degree d+1 hypersurface H of Pr containing X is birational to Pr−1 via the restriction
of Φ to H, where Φ is the rational map induced by the linear system. In fact, by
assumptions, Φ is surjective and, by Proposition 3, the generic fibres of Φ are lines.
These lines are d−secant lines for X so they cut H at one point out of X, hence Φ|H is
birational. We remark that for any generic point of Prthere passes only one d−secant
line for X.

The above assumptions are verified, for instance, when X is the determinantal
variety given by the vanishing of the maximal minors of a (r, r − 1) matrix of generic
linear forms of Pr. In this case the columns of the matrix give the linear syzygies and
condition Kd holds with d = r − 1 (see also [12, § 5.4]).

5. Linear systems of quadrics

In this section we consider linear systems |Λ| of quadrics in Pr and we want to give
some results about the fibres of Φ|Λ|.

First of all we consider linear systems with degenerate Jacobian, i.e. such that
ρ < min(r+1, α+1). Note that, in this case, the rational map Φ|Λ| is never surjective
because dim(Z) = ρ− 1. We give the following
Definition 1 Let |Λ| be a α-dimensional linear systems in Pr. We say that a linear
subsystem |Λ′| ⊆ |Λ| is essential if:

i) dim |Λ′| < dim |Λ|
ii) ρ′ < ρ
iii) ρ′ ≤ dim |Λ′| := α′

where ρ and ρ′ are the ranks of the Jacobian matrix of the linear systems in Pr.

Obviously we have ρ > ρ′ ≥ 2, in fact if ρ′ = 1 the Jacobian matrix of Λ would
have two proportional rows, and this is not possible. Hence α′ ≥ 2, in fact if α′ = 1
then ρ′ = 1. If Λ has some essential subsystem Λ′ then the rational map Φ|Λ′| is the
composition of the rational map Φ|Λ| and the projection π: Pα ��� Pα′

from the linear
space V, whose equations are: y0 = y1 = · · · = yα′ = 0 if Λ′ = 〈f0, f1, ..., fα′〉. Z is
contained in the cone of Pα whose base is Z ′ := Im(Φ|Λ′|) and whose vertex is V. The
fibres of the restriction of π to Z have positive dimension by ii) and |Λ′| has degenerated
Jacobian because ρ′ < min(r + 1, α′ + 1). If |Λ| has an essential subsystem then Φ|Λ|
is not surjective, otherwise Φ|Λ′| would be surjective too and this is not possible as
dim(Z ′) = ρ′ − 1 < α′.

The meaning of the non existence of some essential subsystem |Λ′| of |Λ| relies in
the following theorem of Degoli (see [3, Theorem A and Theorem D])



250 Alzati

Theorem 2

Let |Λ| be a α-dimensional linear systems of quadrics in Pr, r ≥ 3, with degenerate
Jacobian such that ρ = r − t ≤ α, t ≥ 0. Let Φ : Pr ��� Pα be the rational map
induced by |Λ|. Assume that |Λ| does not have essential subsystems, then |Λ| is
subhomaloidal, the generic fibre of Φ is a Pt+1and for the generic point of Pr there
passes a t-dimensional family of secant lines to the base locus of |Λ|.

Theorem 2 describes very explicitly the fibres of Φ only in some particular case
because, in general, some essential subsystem does exist. In this case we have the
following

Proposition 4

Let |Λ| be a α-dimensional linear systems of quadrics in Pr, r ≥ 3, with degen-
erate Jacobian. Let Φ : Pr ��� Pα be the rational map induced by |Λ|. Assume
that |Λ| has an essential, α′-dimensional, minimal, subsystem |Λ′|. Let Ψ : Pr ��� Pα′

be the rational map induced by |Λ′|. Then there exists a surjective rational
map π : Z := Im(Φ) → Z ′ := Im(Ψ) such that Φ−1[π−1(Q)] is a linear space for
any generic point Q ∈ Z ′.

Proof. As we saw, the existence of an essential subsystem |Λ′| ⊂ |Λ| means that Z
is contained in a cone in Pα. Let ρ′ and ρ be the respective ranks of the Jacobian
matrices. By assumption ρ′ ≤ α′ and ρ′ < ρ ≤ r, so that |Λ′| has degenerate Jacobian.
Moreover, as |Λ′| is minimal among the essential subsystems of |Λ|, |Λ′| has no essential
subsystems and by the previous theorem the generic fibre of Ψ is a linear space.

Let π be the projection from the vertex V of the cone in Pα containing Z. Obvi-
ously Ψ = π ◦ Φ as rational map so that the claim follows. �

Note that if, in the assumptions of Proposition 4, Z is not a cone, then, for any
generic point Q ∈ Z ′, we can consider the restriction of Φ among Ψ−1(Q) and 〈V,Q〉.
This restriction is not surjective because its target is π−1(Q) which is strictly contained
in 〈V,Q〉 as Z is not a cone. Hence the restriction has degenerate Jacobian, so that
we can apply the previous results in this situation and so on. On the contrary, if Z
is a cone, the restriction of Φ among Ψ−1(Q) and 〈V,Q〉 is surjective and we can say
nothing else.

Now let us show that we get the same situation, more generally, when Z has
degenerated Gauss map (the following theorem is a consequence of [8, Lemma 6.16]).

Theorem 3

Let Λ be a α-dimensional linear systems of quadrics in Pr. Let Φ : Pr ��� Pα

be the induced rational map. Assume that for any generic point P ′ ∈ Z there exists
a linear space L′ ⊂ Z, P ′ ∈ L′, such that for any point H ′ ∈ L′, TP ′(Z) = TH′(Z).
Assume also that L′ is the maximal linear space in Z with the above property. Then
L := Φ−1(L′) is a linear space in Pr.

Proof. Let P be a generic point in Pr such that Φ(P ) = P ′. Let ρ be the rank of
the Jacobian of Λ at the generic point of Pr, so that dim(Z) = ρ − 1 = dim(TP ′(Z))
because P ′ ∈ Sm(Z). Let us consider the r+1 columns of JP as coordinates of vectors
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in Cα+1. They generates a (ρ−1)-dimensional linear space in Pα which is the embedded
TP ′(Z). Its dual vector space, which has dimension α− ρ , and corresponds to a linear
subspace of Λ, is exactly Ann(P ). In fact Ann(P ), as a subvector space of (Cα+1)∗, is
the kernel of the linear map associated to the transpose of JP .

More precisely: TP ′(Z) is a linear space of dimension ρ−1 in Pα = P(Λ∗) given by
(at least) α+1−ρ independent linear equations. Its dual space [TP ′(Z)]∗ ⊂ Pα∗ = P(Λ)
has dimension α− 1− (ρ− 1) = α− ρ and it is given by r + 1 linear equations whose
coefficients are the columns of JP . So that the points of [TP ′(Z)]∗ correspond exactly
to the elements of the kernel of the linear map associated to the transpose of JP ,
i.e. Ann(P ).

Now if we take another generic point H in Pr such that Φ(H) = H ′ ∈ L′ then
TH′(Z) = TP ′(Z) and therefore Ann(H) = Ann(P ) as they are the dual spaces of the
same linear space. This fact shows that Ann(P ) = Ann(H) for any couple of generic
P,H ∈ L, so that there exists a linear subsystem ΛL in Λ such that any quadric Q ∈ ΛL

is singular at all generic points of L. As the singular locus of a quadric is a linear space
we have that any quadric Q ∈ ΛL is singular at all points of the linear span 〈L〉 of L.
Moreover 〈L〉 is contained in Singloc(Ann(P )) for any generic P ∈ L.

Let us consider a fixed L′ in Z. Let k be its dimension. Let us take a generic point
P ′ ∈ L′ and a generic point P ∈ L.We can choose a base for Λ: f0, ..., fα such that the
equations of L′ in Pα are yk+1 = · · · = yα = 0. According to Landsberg’s notation we
have that baselocΛ∗(L′⊥) is given by the equations: fk+1 = · · · = fα = 0. On the other
hand, by [8, Lemma 6.16], (which is true also when α ≥ r because Landsberg’s re-
sults are true for all linear systems of quadrics with degenerate Jacobian, see [8, § 11])
we have that Singloc(Ann(P )) ⊂ baselocΛ∗(L′⊥), hence 〈L〉 ⊂ baselocΛ∗(L′⊥) which
is X ∪ L in Pr. As 〈L〉 is a linear space, not contained in X, we get 〈L〉 ⊆ L,
i.e. 〈L〉 = L. �

Remark 3 Note that the previous theorem is trivial when Z = Pα. In this case L′ = Pα

and L = Pr. Note also that, when L′ = P ′ is a point, L is the linear span of P and
Con(P ). In fact this linear space is contained in Singloc(Ann(P )) and it has dimension
1 + r − ρ.

Now let V be a degree d ≥ 3 irreducible, reduced, hypersurface in Pr, r ≥ 2,
and let v(x0 : · · · : xr) = 0 its equation. Let us assume that V is not a cone. Let us
consider the first polar map Φ : Pr ��� Pr∗ given by the r + 1 first partial derivatives
of v. Let X be the base locus of the linear system given by those r+1 forms of degree
d − 1, obviously X = Sing(V ). From now on let us assume that the determinant of
the Hessian matrix H of v is zero, i.e. that ρ ≤ r, hence dim(Z) = ρ− 1 < r because
H = JΦ. Note that Z can be contained in a linear subspace of Pr∗ if and only if V is
a cone, as we are assuming that V is not a cone then Z is nondegenerated.

The Perazzo’s map associated to X (see [9]) is the rational map : PX : Pr ���
G(r − ρ, r), where G(r − ρ, r) is the Grassmannian of the (r − ρ)−dimensional li-
near subspaces of Pr, such that, for any generic P ∈ Pr\X, PX(P ) = [TP ′(Z)]∗.
In fact, for such P, TP ′(Z) is a ρ − 1 dimensional liner space of Pr∗, and its dual
is a (r − ρ)−dimensional linear subspace of Pr. By recalling that in this case
(J|P )t = J|P = H|P , we also get that PX(P ) = Sing(QP ), where QP is the (po-
lar) quadric of Pr associated to the matrix H|P . This fact means that the generic fibre
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of PX is supported over the set of points P such that the corresponding QP have the
same singular locus.

Now we can prove the following:

Corollary 3

With the previous notation, let us assume that d = 3. Then the generic fibre of
PX is a linear space of Pr.

Proof. If d = 3, X is the base locus of a linear systems |L| of quadrics and PX is the
composition of Φ|L| with the dual of the Gauss map for Z := Im(Φ). Then we have
only to apply Theorem 3.

Now we want to show that Theorem 1 can give a description of the fibres of PX

in many examples with r ≥ 4.
Let us choose an integer s such that 2 ≤ s ≤ r − 2 and a rational

map Ψ : Ps−1 ��� Pr−s given by r − s + 1 forms of degree δ ≥ 2 Mj =
Mj(x0 : · · · : xs−1), j = s, ..., r. Let Z ′ be Im(Ψ) and let Π be the linear space in
Pr having equations: x0 = x1 = · · · = xs = 0. Let us put Q := xsMs + · · ·+ xrMr and
let Pl be any element of H0(Pr,OPr(l)). Let (y0 : · · · : yr) be the coordinates in Pr∗. It
is known that a degree n hypersurface whose equation is:

v = Pn + Pn−(δ+1)Q+ · · ·+ Pn−k(δ+1)Q
k, n− k(δ + 1) ≥ 1, k ≥ 1,

is such that det(H) = 0, moreover the assumption about s yields that V is not a cone
(see [10]). For sake of simplicity let us assume that Z and Z ′ are hypersurfaces.

We can identify the points (x0 : · · · : xs−1) of Ps−1 with the (r−s+1)-dimensional
linear spaces containing Π and we can identify the target of Ψ with a suitable subspace
of Pr∗. In fact the partial derivatives of v with respect of xs, ..., xr are: ∂v

∂QMs, ...,
∂v
∂QMr,

hence the only equation g(Ms : · · · : Mr) = 0 of Z ′ is also the only equation of Z.
Therefore Z is a cone over the hypersurface Z ′ ⊂ Pr−s ⊂ Pr∗, having a Ps−1 as vertex,
and every (r − s + 1)-dimensional linear space containing Π is sent by Φ onto the Ps

spanned by the vertex of Z and the point(
Ms(x0 : · · · : xs−1) : · · · :Mr(x0 : · · · : xs−1)

) ∈ Pr−s.

In this case the dual of the Gauss map sends Z into the dual of Z ′ which is a variety Z ′∗

contained in the linear space Π � Pr−s ⊂ Pr. Obviously Z ′∗ = Im(PX).
If Ψ is generically injective then s − 1 = r − s − 1, i.e. r = 2s, and the generic

fibre of PX is a Ps+1 containing Π. If the generic fibre of Ψ if finite then r = 2s and
the generic fibre of PX is the union of a finite number of Ps+1. If the generic fibre of Ψ
is a linear space of dimension t ≤ s− 2 then s− 1− t = r − s− 1, i.e. r = 2s− t, and
the generic fibre of PX is a Ps+1. By Theorem 3, for instance, it happens when δ = 2
and Z ′ has a nondegenerate Gauss map. Note that, on the contrary, the generic fibre
of Φ is always the union of a finite number of lines by [17, Propositon 4.9 (ii)].

Example 6 Let us consider the following degree 5 polynomial:

v = x5 + y5 + (x2 − 3xy + y2)(x2z + xyw + y2u),
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here r = 4, s = δ = 2, k = 1, Ψ(x : y) = (x2 : xy : y2) and the condition K2 holds for
such degree 2 forms. If we choose (a : b : c : d : e) as coordinates in P4∗ then Z is the
quadric cone: d2 − ec = 0 and Z ′∗ = Im(PX) is the conic: 4uz − w2 = 0 on the plane
Π : x = y = 0. The fibres of PX are the hyperplanes of P4 containing Π. As they are a
pencil, PX is nothing else than an embedding of P1 in P2 as a smooth conic.

The transpose of the matrix M1 is the following:[
0 0 0 −y x

0 0 −y x 0

]
.

For any generic point P ≡ (x : y : z : w : u) ∈ P4\X, in this case, E(P ) is the
plane of the quadric cone Z containing Φ(P ) : −yd+ xe = −yc+ xd = 0, spanned by
Φ(P ) and the vertex of Z. WE(P ) is the fibre of PX passing through P. The generic
fibre of Φ is a line.

If we change the polynomial v in the following way:

v = x7 + y7 + (x2 − 3xy + y2)(x4z + x2y2w + y4u)

we get an example with r = 4, s = 2, δ = 4, k = 1, n = 7. Here Z,Z ′ and Z ′∗ have the
same equations as in the previous case, but Ψ is generically (2 : 1) and there are no
linear syzygies neither for Ψ nor for Φ. The generic fibre of PX consists of a couple of
hyperplanes of P4 containing the plane Π : x = y = 0; the points of these hyperplanes
are sent by Φ onto a plane of the cone Z. The generic fibre of Φ is a couple of lines
intersecting at a point of Z ′∗.
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