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ABSTRACT

The aim of this paper is to give a constructive proof of one of the basic theorems
of tropical geometry: given a point on a tropical variety (defined using initial
ideals), there exists a Puiseux-valued “lift” of this point in the algebraic variety.
This theorem is so fundamental because it justifies why a tropical variety (defined
combinatorially using initial ideals) carries information about algebraic varieties:
it is the image of an algebraic variety over the Puiseux series under the valuation
map. We have implemented the “lifting algorithm” using SINGULAR and Gfan
if the base field is Q. As a byproduct we get an algorithm to compute the Puiseux
expansion of a space curve singularity in (K™, 0).

The first and third author would like to thank the Institute for Mathematics and its Applications
(IMA) in Minneapolis for hospitality.
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1. Introduction

In tropical geometry, algebraic varieties are replaced by certain piecewise linear objects
called tropical varieties. Many algebraic geometry theorems have been “translated”
to the tropical world (see for example [18, 25, 22, 8] and many more). Because new
methods can be used in the tropical world — for example, combinatorial methods
— and because the objects seem easier to deal with due to their piecewise linearity,
tropical geometry is a promising tool for deriving new results in algebraic geometry.
(For example, the Welschinger invariant can be computed tropically, see [18]).

There are two ways to define the tropical variety Trop(J) for an ideal J in the
polynomial ring K{{t}}[x1,...,x,] over the field of Puiseux series (see Definition 2.1).
One way is to define the tropical variety combinatorially using ¢-initial ideals (see
Definition 2.4 and Definition 2.10, resp. [22]) — this definition is more helpful when
computing and it is the definition we use in this paper. The other way to define tropical
varieties is as the closure of the image of the algebraic variety V(J) of J in K{{t}}"
under the negative of the valuation map (see Remark 2.2, resp. [21, Definition 2.1])
— this gives more insight why tropical varieties carry information about algebraic
varieties.

It is our main aim in this paper to give a constructive proof that these two con-
cepts coincide (see Theorem 2.13), and to derive that way an algorithm which allows to
lift a given point w € Trop(J) to a point in V(J) up to given order (see Algorithms 3.8
and 4.8). The algorithm has been implemented using the commutative algebra sys-
tem SINGULAR (see [10]) and the programme Gfan (see [11]), which computes Grébner
fans and tropical varieties.

Theorem 2.13 has been proved in the case of a principal ideal by [6, Theorem 2.1.1].
There is also a constructive proof for a principal ideal in [24, Theorem 2.4]. For the ge-
neral case, there is a proof in [23, Theorem 2.1], which has a gap however. Furthermore,
there is a proof in [5, Theorem 4.2], using affinoid algebras, and in [12, Lemma 5.2.2],
using flat schemes. A more general statement is proved in [20, Theorem 4.2]. Our
proof has the advantage that it is constructive and works for an arbitrary ideal J.

We describe our algorithm first in the case where the ideal is 0-dimensional. This
algorithm can be viewed as a variant of an algorithm presented by Joseph Maurer
in [17], a paper from 1980. In fact, he uses the term “critical tropism” for a point
in the tropical variety, even though tropical varieties were not defined by that time.
Apparently, the notion goes back to Monique Lejeune-Jalabert and Bernard Teissier!
(see [14]).

! Asked about this coincidence in the two notions Bernard Teissier sent us the following kind and interesting
explanation: As far as I know the term did not exist before. We tried to convey the idea that giving different weights
to some variables made the space “anisotropic”, and we were intrigued by the structure, for example, of anisotropic
projective spaces (which are nowadays called weighted projective spaces). From there to “tropismes critiques”
was a quite natural linguistic movement. Of course there was no “tropical” idea around, but as you say, it is an
amusing coincidence. The Greek “Tropos” usually designates change, so that “tropisme critique” is well adapted
to denote the values where the change of weights becomes critical for the computation of the initial ideal. The
term “Isotropic”, apparently due to Cauchy, refers to the property of presenting the same (physical) characters in
all directions. Anisotropic is, of course, its negation. The name of Tropical geometry originates, as you probably
know, from tropical algebra which honours the Brazilian computer scientist Imre Simon living close to the tropics,
where the course of the sun changes back to the equator. In a way the tropics of Capricorn and Cancer represent,
for the sun, critical tropisms.
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This paper is organised as follows: In Section 2 we recall basic definitions and
state the main result. In Section 3 we give a constructive proof of the main result in
the 0-dimensional case and deduce an algorithm. In Section 4 we reduce the arbitrary
case algorithmically to the 0-dimensional case, and in Section 5 we gather some simple
results from commutative algebra for the lack of a better reference. The proofs of both
cases heavily rely on a good understanding of the relation of the dimension of an ideal
J over the Puiseux series with its t-initial ideal, respectively with its restriction to the
rings Ry|z] introduced below (see Definition 2.1). This will be studied in Section 6.
Some of the theoretical as well as the computational results use Theorem 2.8 which was
proved in [15] using standard bases in the mixed power series polynomial ring K{[t]][z].
We give an alternative proof in Section 7.

We would like to thank Bernd Sturmfels for suggesting the project and for many
helpful discussions, and Michael Brickenstein, Gerhard Pfister and Hans Schénemann
for answering many questions concerning SINGULAR. Also we would like to thank Sam
Payne for helpful remarks and for pointing out a mistake in an earlier version of this
paper.

Our programme can be downloaded from the web page

www.mathematik.uni-kl.de/ keilen/en/tropical.html.

2. Basic notations and the main theorem
In this section we will introduce the basic notations used throughout the paper.

DEFINITION 2.1 Let K be an arbitrary field. We consider for N € Ny the discrete
valuation ring

Ry = K[[t'/N]] = {afjoaa 4N | aq € K}

of formal power series in the unknown tY/N with discrete valuation
E ' / § / 1 7,
1 el N\ _ d el Ny _ - {Oé 0} .
va (a Oaa > ordy <a Oaa ) min N ‘ Qg 75 S N U {oo},

and we denote by Ly = Quot(Ry) its quotient field. If N | M then in an obvious way
we can think of Ry as a subring of Ry;, and thus of Ly as a subfield of Lj;. We call
the direct limit of the corresponding direct system

L=K{{t}}=tmLy = | Ly
N>0

the field of (formal) Puiseux series over K.

Recall that if K is algebraically closed of characteristic 0, then L is algebraically
closed.
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Remark 2.2 1f 0 # N € N then Sy = {1,t"/N #¥/N 3/N 1 is a multiplicatively
closed subset of Ry, and obviously

Ly =Sy'Ry = {ta/N-f‘feRN,aeN}.

The valuation of Ry extends to Ly, and thus L, by val (g) = val(f) — val(g) for
f,g € Ry with g # 0. In particular, val(0) = oo.

Notation 2.3 Since an ideal J < L[z] is generated by finitely many elements, the set
N(J) = {N €Nso [ (J N RN[z])a) = T}

is non-empty, and if N € N(J) then N -Nyo C N(J). We also introduce the notation
Jry = J N Ry[z].

Remark and Definition 2.4 Let N € Nsg, w = (wo,...,w,) € Reg x R?, and ¢ € R.
We may consider the direct product

Vyw N = H K'ta/N'zﬁ
(a, B) € N
w-(§,8)=4q

of K-vector spaces and its subspace

W(Lw,N = @ K ’ ta/N ' &[8'
(a, B) € NP1
w-(§,8)=4q

As a K-vector space the formal power series ring K [[t'/V, z]] is just

K[tV 2]] = T] Vo,
geR

and we can thus write any power series f € K [[t'/V, z]] in a unique way as

F=> fow with fouw € Viun.
qeR

Note that this representation is independent of N in the sense that if f € K[[t'/N', z]]
for some other N’ € N5 then we get the same non-vanishing f, ,, if we decompose f
with respect to N'.

Moreover, if 0 # f € Ry[z] € K[[t'/N,z]], then there is a mazimal ¢ € R such
that fs.,, # 0 and fy . € Wy n for all ¢ € R, since the z-degree of the monomials
involved in f is bounded. We call the elements f, ., w-quasihomogeneous of w-degree
deg,, (fow) = ¢ € R,

ing, (f) = fow € K[tYN, 2]

the w-initial form of f, and

ordy(f) := ¢ = max{deg,,(fgw) | fg.w # 0}
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the w-order of f. Set €, (0) = 0. If t°z® # t%' 2 are both monomials of in(f),
then o # .
For I C Ry[z] we call

iny,(I) = (iny(f) | f € I) < K[tl/Nag]

the w-initial ideal of 1. Note that its definition depends on N.
Moreover, we call for f € Ry|z]

t— iny (f) = iny (f)(1, 2) = inw(f) =1 € Klz]
the t-initial form of f w.r.t. w, and if f =t=*/N . g € L[z] with g € Ry[z] we set
t —ing, (f) ==t — iny(g).

This definition does not depend on the particular representation of f.
If J C L[z] is a subset of L[z], then

t—ing(J) = (t —ing(f) | f € J) < K]

is the t-initial ideal of J, which does not depend on any N.

For two w-quasihomogeneous elements f,., € Wy n and fyr ., € Wy oy v We have
Jow forw € Wytq wn. In particular, in,(f - g) = in,(f) - in,(g) for f,g9 € Ry[z], and
t —ing(f - g) =t —iny,(f) - t —iny(g) for f,g € Lx].

EXAMPLE 2.5 Let w = (—1,-2,—1) and
f= 2+ 324 12) 2% 4+ (=365 2th) -+ Pxy® + (1 +3t%) - 2Ty
Then ord,, (f) = —5, iny,(f) = 2tx? — 3t3y2, and t — in, (f) = 222 — 3y

Notation 2.6 Throughout this paper we will mostly use the weight —1 for the vari-
able ¢, and in order to simplify the notation we will then usually write for w € R™

in, instead of in_y,

and
t —in, instead of t—in_y).

The case that w = (0,...,0) is of particular interest, and we will simply write
ing respectively t — ing.
This should not lead to any ambiguity.

In general, the t-initial ideal of an ideal J is not generated by the t-initial forms
of the given generators of J.

EXAMPLE 2.7 Let J = (tx+y,2+t) < L[z,y] and w = (1,—1). Then y —t? € J, but

y=t—in,(y — %) & (t —in,(tz +y),t —in,(z + 1)) = ().
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We can compute the ¢-initial ideal using standard bases by [15, Corollary 6.11].

Theorem 2.8

Let J = (I)p) with I QK[tV/N 2], w € Q" and G be a standard basis of I with
respect to >, (see Remark 3.7 for the definition of >,).
Then t — in,(J) =t — in, (1) = (t — iny,(G)) < K|z].

The proof of this theorem uses standard basis techniques in the ring K[[t]][z]. We
give an alternative proof in Section 7.

EXAMPLE 2.9 In Example 2.7, G = (tz 4y, x +t,y — t?) is a suitable standard basis
and thus t — iny,(J) = (x,y).

DEFINITION 2.10 Let J < L[z]| be an ideal then the tropical variety of J is defined as
Trop(J) = {w € R" | t — iny(J) is monomial free}.
It is possible that Trop(J) = 0.

EXAMPLE 2.11 Let J = (x +y+ 1) C L[z,y]. As J is generated by one polynomial f
which then automatically is a standard basis, the ¢-initial ideal t —in,(J) will be
generated by t — in, (f) for any w. Hence t — in,(J) contains no monomial if and only
if t —iny,(f) is not a monomial. This is the case for all w such that w; = wy > 0, or
w1 =0 > wy, or wg =0 > wy. Hence the tropical variety Trop(J) looks as follows:

We need the following basic results about tropical varieties.

Lemma 2.12
Let J, Jy,...,Jr I L[z] be ideals. Then:
(a) J1 CJo» = Trop(Ji) 2 Trop(Jz),
(b) Trop(JiN...NJg) = Trop(J;1)U...U Trop(Jx),

)
)
(C) TI'Op( ) T\I‘Op(f) = UPEmlnAss(]) Trop(P), and
(d) Trop(Ji + J2) € Trop(Ji) N Trop(J2).

Proof. Suppose that J; C Jy and w € Trop(J2) \ Trop(Ji). Then t — in, (J;) contains
a monomial, but since t —iny,(J1) C t — in,(J2) this contradicts w € Trop(J2). Thus
Trop(Jz2) C Trop(Jy). This shows (a).
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Since J1N...NJg C J; for each i = 1,...,k the first assertion implies that
Trop(J1) U...UTrop(Jx) € Trop(Ji N...N Jg).

Conversely, if w ¢ Trop(J;) for i = 1,...,k then there exist polynomials f; € J; such
that t — iny,(f;) is a monomial. But then t —iny,(f1 -+« fx) =t — ing,(f1) - - - t — ing (fx)
is a monomial and f1---fx € J1---Jpy C JiN...NJg. Thus w & Trop(Ji N...NJg),
which shows (b).

For (c) it suffices to show that Trop(J) C Trop(v.J), since J C VJ =
Nreminass(y - I w & Trop(v/J) then there is an f € v/J such that t — in,(f) is
a monomial and such that f € J for some m. But then t —in,(f™) = t — in, (f)™
is a monomial and thus w ¢ Trop(J).

Finally (d) is obvious from the definition. O

We are now able to state our main theorem.

Theorem 2.13

If K is algebraically closed of characteristic zero and J < K{{t}}z] is an ideal
then
we Trop(J)NQ" <<= FJpeV(J): —val(p) =w € Q"

where val is the coordinate-wise valuation.

The proof of one direction is straight forward and it does not require that K is
algebraically closed.

Proposition 2.14
If J < L[z] is an ideal and p € V(J) N (L*)", then —val(p) € Trop(J).

Proof. Let p = (p1,...,pn), and let w = —val(p) € Q". If f € J, we have to
show that t —in,(f) is not a monomial, but since this property is preserved when
multiplying with some t¥ we may as well assume that f € Jgr,. As p € V(J),
we know that f(p) = 0. In particular the terms of lowest t-order in f(p) have to

cancel. But the terms of lowest order in f(p) are in,(f)(a1-t“1, ..., a,-t~“"), where
pi = a; -7 4+ h.o.t.. Hence in,(f)(a1t™",...,a,t™“") = 0, which is only possible
if in,,(f), and thus t — in,(f), is not a monomial. O

Essentially, this was shown by Newton in [19].

Remark 2.15 If the base field K in Theorem 2.13 is not algebraically closed or not of
characteristic zero, then the Puiseux series field is not algebraically closed (see e.g. [13]).
We therefore cannot expect to be able to lift each point in the tropical variety of an
ideal J < K{{t}}[z] to a point in V(J) C K{{t}}". However, if we replace V(J) by
the vanishing set, say W, of J over the algebraic closure L of K{{t}} then it is still
true that each point w in the tropical variety of J can be lifted to a point p € W such
that val(p) = —w. For this we note first that if dim(J) = 0 then the non-constructive
proof of Theorem 3.1 works by passing from J to (J )f@], taking into account that
the non-archimedian valuation of a field in a natural way extends to its algebraic
closure. And if dim(J) > 0 then we can add generators to J by Proposition 4.6 and
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Remark 4.5 so as to reduce to the zero dimensional case before passing to the algebraic
closure of K{{t}}.

Note, it is even possible to apply Algorithm 3.8 in the case of positive character-
istic. However, due to the weird nature of the algebraic closure of the Puiseux series
field in that case we cannot guarantee that the result will coincide with a solution of J
up to the order up to which it is computed. It may very well be the case that some
intermediate terms are missing (see [13, Section 5]).

3. Zero-dimensional lifting lemma
In this section we want to give a constructive proof of the lifting Lemma 3.1.

Theorem 3.1 (lifting Lemma)

Let K be an algebraically closed field of characteristic zero and L = K{{t}}. If
J<1L|z] is a zero dimensional ideal and w € Trop(J)NQ", then there is a point p € V(J)
such that —val(p) = w.

Non-Constructive Proof. If w € Trop(J) then by Lemma 2.12 there is an associated
prime P € minAss(J) such that w € Trop(P). But since dim(J) = 0 the ideal P is
necessarily a maximal ideal, and since L is algebraically closed it is of the form

P:<m1_p17"'>$n_pn>

with p1,...,p, € L. Since w € Trop(P) the ideal t — in,(P) does not contain any
monomial, and therefore necessarily ord;(p;) = —w; for all ¢ = 1,...,n. This shows
that p = (p1,...,pn) € V(P) CV(J) and val(p) = —w. O

The drawback of this proof is that in order to find p one would have to be able
to find the associated primes of J which would amount to something close to primary
decomposition over L. This is of course not feasible. We will instead adapt the
constructive proof that L is algebraically closed, i.e. the Newton-Puiseux Algorithm
for plane curves, which has already been generalised to space curves (see [17, 1]) to
our situation in order to compute the point p up to any given order.

The idea behind this is very simple and the first recursion step was basically
already explained in the proof of Proposition 2.14. Suppose we have a polynomial
f € Rn[z] and a point

p:(ul-t"‘l—i—vl-t’gl—|—...,...,un-t°‘”—|—Un-tﬁ"—|—...> e (L™

Then, a priori, the term of lowest t-order in f(p) will be in_(f)(ug - 2%, ..., up - 7).
Thus, in order for f(p) to be zero it is necessary that t —in_,(f)(u1,...,uy) = 0. Let
p’ denote the tail of p, that is p; = u; - t% + ¢t - p,. Then p’ is a zero of

=10 (w1 + 1), 1% (up + ).

The same arguments then show that t —in,_g(f’)(v1,...,v,) = 0, and assuming now
that none of the v; is zero we find t — in,_g(f’) must be monomial free, that is o — 3
is a point in the tropical variety and all its components are strictly negative.
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The basic idea for the algorithm which computes a suitable p is thus straight
forward. Given w = —q« in the tropical variety of an ideal J, compute a point u €
V(t —iny(J)) apply the above transformation to J and compute a negative-valued
point in the tropical variety of the transformed ideal. Then go on recursively.

It may happen that the solution that we are about to construct this way has some
component with only finitely many terms. Then after a finite number of steps there
might be no suitable w in the tropical variety. However, in that situation we can simply
eliminate the corresponding variable for the further computations.

ExAMPLE 3.2 Consider the ideal J = (fi,..., f1) < L[z, y] with

fi= ¢?+ 482y + (=17 + 261 = °),
fo= (1+1t) -z —y+ (—t—3t2),

fa= ay+ (=t +t2) -z + (2 —t*),
fi= 2% = 2tw + (12 —3).

The t-initial ideal of J with respect to w = (—1,—3) is
t —ingy(J) = (y* — 1,2 — 1),

so that w € Trop(J) and u = (1, 1) is a suitable choice. Applying the transformation
You : (@y) = (- (1 +2),837% - (14 y)) to J we get J' = (f],..., f1) with

fi = By?+ (2653 + 47/2) -y 4+ (44772 4 264 —19),

o= ({t+13) -z —t32 .y (=32 - 27),

= t5/2-my+(—t2—|—t3+t5/2) x4ty (t5/2—|—t3—t4),
fi= 2 — 2.

This shows that the z-coordinate of a solution of J' necessarily is = +t*/2, and we
could substitute this for x in the other equations in order to reduce by one variable.
We will instead see what happens when we go on with our algorithm.

The t-initial ideal of J’ with respect to w’ = ( — %, —%) is

t—ing (J') = (y+ 2,2 — 1),

so that w’ € Trop(J’) and «' = (1, —2) is our only choice. Applying the transformation
Yor ¢ (@) = (E2 - (1 +2),t12 - (=2 +y)) to J' we get the ideal J” = (f{,..., f1)
with

é/: (t3/2+t5/2)'l‘—t2'y+t5/2,
é/ — t7/2 :Ey“_ (—t5/2 +t3 _t7/2) cxr+ (t3 +t7/2) y+ (_t7/2 —t4),
1= 322 + 283

If we are to find an w” € Trop(J”), then f; implies that necessarily w] = 0. But we
are looking for an w” all of whose entries are strictly negative. The reason why this
does not exist is that there is a solution of J” with x = 0. We thus have to eliminate
the variable z, and replace J” by the ideal J” = (f"') with

f/// =y— t1/2.
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Then w” = —% € Trop(J”) and t — in» (f"”) = y—1. Thus v = 1 is our only choice,

and since f(u" - t=+"") = f"(t'/?) = 0 we are done.
Backwards substitution gives
p= (t""l . (Ul 4 (ull + 0)) 2 (u2 4 s (u/2 4+ s’ _um)))
= (¢ (1+e12) 82 (14612 (<24 412))
_ (t + t3/2, 312 _ o2 4 t5/2)
as a point in V(J) with val(p) = (1,3) = —w. Note that in general the procedure will
not terminate.

For the proof that this algorithm works we need two types of transformations
which we are now going to introduce and study.

Definition and Remark 3.3 For w’ € Q" let us consider the L-algebra isomorphism
O Llz] — Lz] @ 7% - 1,
and the isomorphism which it induces on L"
Gt L = L (P, s ) = (790 790,

Suppose we have found a p' € V(@ (J)), then p = ¢ (p') € V(J) and val(p) =
val(p') — o'

Thus choosing w’ appropriately we may in Theorem 3.1 assume that w € Q7,
which due to Corollary 6.15 implies that the dimension of J behaves well when con-
tracting to the power series ring Ry|[z] for a suitable N.

Note also the following properties of &, which we will refer to quite frequently.
If J < L[z] is an ideal, then

dim(J) = dim (®,/(J)) and t —ing, (J) =t — ing(Pur (J)),
where the latter is due to the fact that
deg,, (t*-2°%) = —a + o' - B = deg, (to‘_“’,'ﬂ -2P) = deg, (@ (t* - 27))
with w = (—1,w’) and v = (—1,0,...,0).

Definition and Remark 3.4 For u = (u1,...,u,) € K", w € Q" and w = (—1,w) we
consider the L-algebra isomorphism

You : Llx] — Llz] : 2 = 7% (u; + 15),
and its effect on a w-quasihomogeneous element

fq7w — Z aa’ﬁ . ta/N . &ﬂ

(o, B) € N*F1L
- tw-B=gq
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If we set
n
pg = 1_‘[(uZ + )% =P e (x1,...,2,) < K[z]
i=1
then .
'Vw,u(fq,w) — Z a“Oé,B . tOl/N . H t—wlﬁl . (U’L _|_ 1'1)161
- tw-B=¢q i=1
= 79 Y aag- (U +pp)
— S 4w-B=q (1)
= t7 7 <fq,w(1au) + Z Qo3 pﬂ)
— 7 tw-B=q
= t_q .fqyw(l’u)—l_t_q.pfq,wvu’
with
Do = Z A3 D3 € (T1,...,2n) < K[z].
— & tw-B=q

In particular, if w € % 2" and f =3 < fw € Rn(z] with ¢ = ordy,(f) then

')’w,u(f) = t_q g

where

g = Z (t(j_q : fq,w(]"u) + tq_q : pfq,w7u) 6 RN[@]
q<q

O

The following lemma shows that if we consider the transformed ideal 7, ,(J) N
Ry|[z] in the power series ring K [[t'/V, z]] then it defines the germ of a space curve
through the origin. This allows us then in Corollary 3.6 to apply normalisation to find
a negative-valued point in the tropical variety of v, (/).

Lemma 3.5
Let J <1 L[z], let w € Trop(J) N+ - Z", and u € V (t — in,(J)) C K™. Then
C

YoulJ) N Rylz] € N 2, . 2) < Rylal.

Proof. Let w = (—1,w) and 0 # f = Yuu(h) € You(J) N Ry[z] with h € J. Since f is
a polynomial in x we have
h=,0(f)=F" 21 —ur,.. " 2 — up) €™ Ryl
1

for some m € § -Z. We can thus decompose g := t~™ - h € Jg, into its w-
quasihomogeneous parts, say

tT" - h = g = qu,wa
q<q
where ¢ = ord,(¢g) and thus g4, = in,(g) is the w-initial form of g. As we have seen

in Remark 3.4 there are polynomials py,_, « € (z1,...,%,) < K[z] such that

'Yw,u(gq,w) =t 1. gq,w(la u) +t71 *Pggw,u-
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But then

f = ’Yw,u(h) = 'Yw,u(tm ' g) =t". ’Yw,u(g) =t". Yw,u (Z g%w)

7<q

=t" (77 ggw(Lw) + 170 Py, )
9<q

= tquA ’ gq,w(:l?u) + tqu : pgd,wvu + Ztqu : (gqﬂu(]‘? U) +pgq,w7u)'
q<q

However, since g € J and u € V(t — in,,(J)) we have
9gw(l,u) =t —iny(g)(u) =0
and thus using (1) we get
Pggwu = ¢4 - (’Yw,u(gq,w) —t74. gzj,w(la u)) =11 ’Yw,u(gé,w) ?é 0,

since gg.» = iny(g) # 0 and 7, is an isomorphism. We see in particular, that m—g§ > 0

since f € Ry(z] and py. , u € (*1,...,7,) < K|[z], and hence
f=tma “Pggwu T Ztmiq (9w (1, 0) + Py u) € <t1/N7 T1, ..oy Tn)- .
a<q

The following corollary assures the existence of a negative-valued point in the
tropical variety of the transformed ideal — after possibly eliminating those variables for
which the components of the solution will be zero.

Corollary 3.6

Suppose that K is an algebraically closed field of characteristic zero. Let J <1 L[x]
be a zero-dimensional ideal, let w € Trop(J)NQ", and u € V (t — in,,(J)) C K™. Then

Ip=(p1,---,0n) € V(Ywu(J)) : Vi: val(p;) € Qs U {0}
In particular, if n, = #{p; | p; # 0} > 0 and z,, = (z; | p; # 0), then
Trop (w,u(J) N Llzy]) N QL # 0.

Proof. We may choose an N € N(v,.(J)) and such that w € + L% Let I =
You(J) N Ry [z].

Since 7, is an isomorphism we know that
0= dim(J) = dim (10.u(J)),
and by Proposition 5.3 we know that
Ass(I) = {Pry | P € Ass(vwu(J))}-
Since the maximal ideal

m:<t1/N,x1,...,xn> < Ry|[z]

Ry [z]
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contains the element ¢!/, which is a unit in L[z], it cannot be the contraction of a
prime ideal in L[z]. In particular, m ¢ Ass(/). Thus there must be a P € Ass(I) such
that P ; m, since by Lemma 3.5 I C m and since otherwise m would be minimal
over I and hence associated to I.

The strict inclusion implies that dim(P) > 1, while Theorem 6.10 shows that

dim(P) < dim(I) < dim (y,(J)) +1 = 1.

Hence the ideal P is a 1-dimensional prime ideal in Ry[z] C K [[t'/V, z]], where the
latter is the completion of the former with respect to m. Since P C m, the completion P
of P with respect to m is also 1-dimensional and the normalisation

o K[[#VN,2]]/P — R~ K[[s]]

gives a parametrisation where we may assume that w(tl/ N ) = sM for some M € Ny
since K is algebraically closed and of characteristic zero (see e.g. [4, Corollary 4.4.10]
for K = C). Let now s; = ¢(x;) € K][[s]] then necessarily a; = ords(s;) > 0, since
is a local K-algebra homomorphism, and f(s™,s1,...,s,) = (f) = 0 for all f € P.
Taking I C P C P and Yw,u(J) = (I) into account and replacing s by L/ (INM) e get

FEYN p) =0 forall f€yyu(J)

where
p= (sl(tl/(N'M)), .. ,sn(tl/(N'M))) € Ry, CL".
Moreover,
a;
val(p) = 1 € Qo U{oo},

and every f € yuu(J) N L[z,] vanishes at the point p’ = (p; | p; # 0). By Proposi-
tion 2.14

—val(p) € Trop(yu,u()NLLz,))NQL. =

Constructive Proof of Theorem 3.1 Recall that by Remark 3.3 we may assume that
w € Q%. It is our first aim to construct recursively sequences of the following objects
forv e N:

e natural numbers 1 < n, <n,

e natural numbers 1 <i,1 < ... <1,,, <n,

e subsets of variables z, = (zi,,,---, i, ),

e ideals J), < L[z, _4],

e ideals J, < L[z, ],

o vectors Wy, = (Wyiyys- -+ Wiy, ) € Trop(Jy) N (Q<o)™, and
o vectors Uy = (Ui, s - - - Ui, ) € V(6 —ing, (J,)) N (E*)™.

We set ng =n, 2_; = x¢g =z, Jo = Jy = J, and wp = w, and since t — in,(J)
is monomial free by assumption and K is algebraically closed we may choose a ug €
V (t — ing, (Jo)) N (K*)™. We then define recursively for v > 1

Jl// = /70.)1,_17’!1,”_1 (JV—l)
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By Corollary 3.6 we may choose a point ¢ € V(J]) C L"™-! such that val(g;) =
ord(¢g;) >0 foralli=1,...,n,_1. As in Corollary 3.6 we set

ny = #{Ql | qi 7& 0} S {0,...,77,,/_1},

and we denote by
1<iy1 <...<iyp, <n

the indexes ¢ such that ¢; # 0.
If ny, = 0 we simply stop the process, while if n, # 0 we set

Ly = (xiVJ? <o 7miu,n,,) Cz,_;.

We then set
JV = (JL + <£V—1 \ll/)) N L[iu]v

and by Corollary 3.6 we can choose
Wy = (Wuip1s- s Wiy, ) € Trop(J,) N QLY.
Then t — iny,, (J,) is monomial free, so that we can choose a
Uy = (Unyiy 1y - - Uiy, ) € V(6 —ing, (J,)) N (E)™.
Next we define

gi=sup{v|i€{ivi,...,lun,}} € NU{oco} and

min{e;,u} y
Pui= Y, Uit 20 @i
v=0
fori=1,...,n. All w,; are strictly negative, which is necessary to see that the p, ;

converge to a Puiseux series. Note that in the case n = 1 the described procedure is
just the classical Puiseux expansion (see e.g. [4, Theorem 5.1.1] for the case K = C).
To see that the p,; converge to a Puiseux series (i.e. that there exists a common
denominator N for the exponents as pu goes to infinity), the general case can easily be
reduced to the case n = 1 by projecting the variety to all coordinate lines, analogously
to the [17, proof in Section 3|. The ideal of the projection to one coordinate line is
principal. Transformation and intersection commute.

It is also easy to see that at p = (p1,...,pn) € L™ all polynomials in J vanish,
where

oo v
p; = lim p,; = Z Upi-t Zj:o “ e Ry C L.
o v=0 U

Remark 3.7 The proof is basically an algorithm which allows to compute a point
p € V(J) such that val(p) = —w. However, if we want to use a computer algebra
system like SINGULAR for the computations, then we have to restrict to generators
of J which are polynomials in t/V as well as in 2. Moreover, we should pass from ¢t/
to ¢, which can be easily done by the K-algebra isomorphism

Uy : Llz] — Llz] : t — tN, 2z — ;.
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Whenever we do a transformation which involves rational exponents we will clear the
denominators using this map with an appropriate N.

We will in the course of the algorithm have to compute the t-initial ideal of J
with respect to some w € Q", and we will do so by a standard basis computation using
the monomial ordering >, given by

agh s 1Y —

—a+w-f>-ad+w-for(-~atw-f=-ad +w-F and z’ > gﬁ/),

where > is some fixed global monomial ordering on the monomials in z.

Algorithm 3.8 (ZDL — Zero dimensional lifting algorithm)
INPUT: (m, f1,..., fr,w) € Nsg x K[t, 2]¥ x Q" such that dim(J) = 0 and

w e TI‘Op(J) for J = <f1, .. 7fk>L[§}

OutpuT: (N,p) € Nx K[t,t~']" such that p(t'/V) coincides with the first m

terms of a solution of V(J) and such that val(p) = —w.

INSTRUCTIONS:

Choose N > 1 such that N -w € Z™.
w:=N- w
IF some w; > 0 THEN

FOR i = 1,...,k DO f; = ®y(f;) - ¢~ (®al5)).
W= w.

w:=(0,...,0).

Compute a standard basis (g1,...,91) of (f1,..., fk) K[tz With respect to the or-
dering >,,.

e Compute a zero u € (K*)" of (t —iny,(g1),...,t —in,(9)) K[a]-

e I[F m =1THEN (N,p) := (N,uy -t 7“4, ... up - t79").

ELSE

Set G = (You(fi)|i=1,...,k).
FOR i =1.....n DO

* Com ute a generating set G’ of (G, ;) kit 2 o0
« IF £ 2 THEN (G i) kle) * ()

x;
Replace é‘ by a generating set of (G') N K|[t, z].

IF 2 = () THEN (N, p) := (N, uy - £, ... up - £790).
ELSE

* Compute a point «’ in the negative orthant of the tropical variety of
L

*;{,\) 0] = ZDL(m ~1,G,w).

*

*FOR]—l .,n DO

- IF z; € x THEN p; := t—wir N +pb).
L ELSE py = eV (ui + ;)
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e IF some @; > 0 THEN p:= (t 7“1 - py,...,t 7% . p,).

Proof. The algorithm which we describe here is basically one recursion step in the
constructive proof of Theorem 3.1 given above, and thus the correctness follows once
we have justified why our computations do what is required by the recursion step.
Notice that Step 4 and the last step make an adjusting change of variables to make
all w; non-positive in the body of the algorithm. This together with Step 3 guarantees
that 7 is a polynomial.

If we compute a standard basis (g1,...,q1) of (fi,..., fk) K[tz With respect to
>, then by Theorem 2.8 the t-initial forms of the g; generate the t-initial ideal of
J={(f1,---; fx)Ljz)- We thus compute a zero u of the t-initial ideal as required.

Next the recursion in the proof of Theorem 3.1 requires to find an w € (Qso U
{o0})", which is —val(q) for some g € V/(.J), and we have to eliminate those components
which are zero. Note that the solutions with first component zero are the solutions
of J + (z1). Checking if there is a solution with strictly positive valuation amounts
by the proof of Corollary 3.6 to checking if (J + (z1)) N K[[t]][z] C (¢,z), and the
latter is equivalent to G’ C (¢,z) by Lemma 3.9. If so, we eliminate the variable x;
from (G") K[t.z]» Which amounts to projecting all solutions with first component zero
to L™ 1. We then continue with the remaining variables. That way we find a set

of variables {z;,,...,x; } such that there is a solution of V(J) with strictly positive
valuation where precisely the other components are zero.
The rest follows from the constructive proof of Theorem 3.1. U

Lemma 3.9

Let fl?"'afk € K[a&]; J = <f17'-'7fk‘>L[§]7 I = <f1a-"7fk>K[t,£} : <t>007 and
let G be a generating set of I. Then:

JNK[tz] € (t,2) < IC(tz) < GC{,z).

Proof. The last equivalence is clear since I is generated by G, and for the first equiv-
alence it suffices to show that J N K{[t]][z] = (I) k{)[a]-

For this let us consider the following two ideals I" = (f1,..., fx) k2] * (£)°° and
I" = (f1, s Jo) Kt 1) ¢ (1)°°- By Lemma 6.6 we know that J N K[[t]][z] = I" and
by [15, Proposition 6.20] we know that I' = (I") g(jyz)- It thus suffice to show that
I" = (I gy (). Obviously I C I " which proves one inclusion. Conversely, if f € I”
then f satisfies a relation of the form

k
" feu="gi- fi
i=1
with m > 0, v € KJ[t], u(0) = 1 and ¢1,...,9r € Klt,z]. Thus f-u € I and
f:fTUE <I>K[t]<t>[z]' 0

Remark 3.10 In order to compute the point w’ we may want to compute the tropical
variety of (G) [z The tropical variety can be computed as a subcomplex of a Grébner
fan or more efficiently by applying [3, Algorithm 5] for computing tropical bases of
tropical curves.





