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ABSTRACT

We prove smoothing effect for solutions of a regularized Schrodinger equation
on compact manifolds under the hypothesis of the Geometric control.

1. Introduction

It is well known that the solution of the free Schrédinger equation

{i@m—AuzO in RxRY

u(0,.) = ugp in RY,

satisfies the following smoothing effect
O[] 10 At a) et < e fuol e
R Jjz|<R

for all ug € L?(RY) and all nonnegative R.
(i) ue CPR\ {0} x RY),

for all ug € L*(RY) with a compact support.

* The author is supported by Tunisian Ministry for Scientific Research and Technology, within the
LAB-STI 02 program.
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The property (i) implies that u(t, x) belongs, for almost all ¢, to the local Sobolev

space Hllo/f(Rd). It has been, first, observed by Sj6lin [18], Vega [19] and Constantin-
Saut [7] and it was later generalized to different perturbations of the flat Laplacian (see

Ben Artzi-Klainerman [4], Ben Artzi-Devinatz [3] Constantin-Saut [8] and Doi [11, 12]).

In the case of exterior non-trapping domain, Burq, Gerard and Tzvetkov [5] proved
the smoothing effect for Schrédinger equation with Dirichlet condition. This result was
proved in [6] with loss of e- derivatives for some captive geometry.

Doi [10] has proved that, for Schrédinger operators in R?, the non trapping as-
sumption is necessary for the H'/2 smoothing effect. This result has been extended to
the case of boundary value problems by Burq [6].

As a conclusion, we can assert that the smoothing property for Schrédinger equa-
tion is equivalent to the non trapping condition.

Furthermore, what concerns the wave equation, this non trapping condition has
also a relationship with the problem of the uniform local energy decay. Indeed this
decay is equivalent to the non trapping hypothesis (see [14] for the necessary condition
and [13] for the sufficiency ).

In the captive case, the stabilization of the wave equation was achieved by adding
a dissipative term of type a(z)0,u. Under a microlocal geometric assumption called
“geometric control”, J. Rauch and M. Taylor [16] proved the uniform energy decay for
the dissipative wave equation on compact manifold (where all rays are captive). This
result was extended to the case of manifolds with boundary by C. Bardos, G. Lebeau
and J. Rauch [2] (see [1] for exterior domain).

By analogy with the stabilization problem for the wave equation we are interested,
in this paper, in producing the smoothing effect “by force” for Schrédinger equation on
compact manifolds by adding to the equation a regularizing term ia(x)(1 — A)%a(x)u,

where a is a real valued smooth function and 0 < o < —.

More precisely, when M is a compact connected Riemannian manifold of dimen-
sion d > 2 and A the corresponding Laplace-Beltrami operator, we consider the fol-
lowing regularized Schrodinger equation

{ i0u — Au+ia(z)(1 — A)*a(z)u+ Rou =0 in Ry x M @

u(0,.) = up in M.

1
Here 0 < a < 37 a(x) € C*°(M) and Ry is a pseudo-differential operator of order zero.

In Section 2 we will prove that the problem (2) is well posed in H*(M) for all
s € R and we will denote by (U(t))+>0 the semi group which generates its solution:
u(t,.) = U(t)up.

The aim of this article is to establish, under the “geometric control” condition,
some smoothing effects for equation (2). More precisely we have.
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Theorem 1

Assume that w = {a(x) # 0} controls geometrically M, i.e every geodesic of M
enters the set w. Then the following hold:

(a) For T > 0 and f € L?([0,T], H*(M)), we have

we L2 ((0,T), HT(M)) (3)

loc

t
where u(t,.) — / Ut — ) f(7,.)dr, (t > 0).
0
Furthermore, for every 0 € C5°((0,T")), there exists ¢ > 0 such that

HGUHL2(R,H$+O‘(M)) <c HfHLQ([O,T],HS(M)) ' <4)

(b) Let vg € H*(M), we have
v e C™((0,400) x M) (5)

where v is the solution of (2) with initial data vy.
Furthermore, for every ¢ € C§°((0,4+00)), 8 € Nt there exists ¢ > 0 such that

sup  [D%(i0)(t, )| < ellvoll sy (6)
(t,x)eRXM

Remark 2 Taking into account that our problem is on compact manifold, any gain
of d-regularity (6 > 0) with respect to initial data leads by iteration to C'*° smoothing
effect. That is to say that, outside any neighborhood of ¢t = 0, our result is still the
same as the (i) type of smoothing estimate, for which the nontrapping condition is
necessary. Therefore, we can say that the necessity of our geometric control condition
is not clear; this constitutes an open problem.

We conclude this introduction with a short description of Proof of Theorem 1.
We first check that if ug € H*(M) and f € L?([0,T]; H*(M)) then the function

u=U(t)ug + /OtU(t —7)f(r,.)dr € L*([0,T); H"*(w))

(Lemma 1). Then, we prove that the L2 ((0,T); H*T%) regularity propagates over the
bicaracteristic flow of A for solutions of (2) (Proposition 1). The proof of this result
is very similar to the one of [9]. Using the propagation of regularity we deduce that
u € L ((0,T); H*+*(M)) which yields (3). Applying the closed graph theorem, we
obtain the estimate (4) (Proposition 3). The proof of the C*° smoothing effect (5)
is completed by iteration of the previous regularity result for f = 0. Finally, using,
once again, the closed graph theorem and the Sobolev embedding, we deduce the

estimate (6).

The rest of this article is organized as follows:
2) Well-posedness.
3) Propagation of regularity.
4) Proof of Theorem 1.
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2. Well-posedness

In this section we establish that the Cauchy problem (2) is well posed in H*(M)
(s € R).

We denote by A, = —iA — a(x)(1 —
defined on L?(M) with domain D(A,) = {f
a(z)(1 — A)a(x).

A)%a(x) + iRo the unbounded operator
€ L2(M); Ayf € L3 (M)} and set B, =

Proposition 1
The problem (2) is well posed in H*(M) (s € R).

Proof. We begin by proving the proposition for s = 0. Let f € D(A,), we have

Re(Aaf,f) = —lI(1 = A)*2a(x) f(2)172(pp) + Im(Rof, f)

S CHfH%Q(My

so A, — c is dissipative. It remains to show that the operator A, — ¢ is maximal.
Let g € L?(M), we look for f € D(A,) satisfying f — Aof +cf = g, i.e.

iIAf+a(z)(1—=A)a(z)f+(1+c)f =g in M.
Let us define the bilinear form

b: HY(M) x H'(M) — C

(f,h) — / (—iV VA + (1+ &) fh + (1 — A)*2af(1 = A)ol2ah)dx
M
and the linear form
L: H (M) — C
h — /gﬁ.

It is easy to see that b and L are continuous and that

VEe H (M),  [b(f, )l = £l -

Hence b is coercive. According to the Lax Milgram theorem, there exists a unique
f € H'(M) such that
b(f,h) = L(h),Yh € H'(M).

We deduce that
iANf+a(x)(1—A)(x)f+(1+c)f =g in D'(M)

then Af € L*(M) and so f € D(A,).

The operator A, — ¢ is maximal and dissipative, therefore according to the Hille-
Yoshida theorem [17], A, generates a semi group (U(t)):>0 such that if f € L*(M)
then U(t)f € C([0,+00), L?(M)) is the unique solution of (2).

Now, we prove the well posedness of problem (2) in H*(M), s € R.
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Let ug € H*(M), set vg = (1 — A)*/?ug € L*(M) and consider the following
problem

{i@tv—Av—l—iBav—l—va:() in Ry xM o

v(0,.) = v in M,

where

Go = Ro+ [(1 — A)*2iB, + Ro(1 — A)~%/2,

is a pseudo-differential of order zero. Taking into account what precedes, problem (7)
admits a unique solution v € C(R,, L*(M)). Set u = (1 — A)~*/?v € C(R,, H¥(M)),
it is easy to see that w is the unique solution of the problem (2). O

3. Propagation of regularity

We are interested, in this section, in the regularity of solutions of the following problem
{ i0u — Au +ia(z)(1 — A)*a(z)u = f ®

u(0,.) = uo,

1
where 0 < o < 3

The following lemma shows that the new term (ia(z)(1 — A)®a(z)u) goes in the
“right way”, in the sense that it guarantees the smoothness of solutions of (8) over the
regularizing set w = {z € M, a(x) # 0}.

Lemma 1

Let ug € H*(M), s € R and f € L%([0,T), H*(M)), if u is a solution of (8), then
au € L*([0,T), H***(M)). Furthermore, there exists ¢ > 0 such that

T
| aulreeqary < e(lolreqany + 190 2omy mecary )

Proof. 'We multiply (8) by (1 — A)*u, we integrate over [0,7] x M and take the
imaginary part. We obtain

T 1 1
/0 HCLUH%{HO‘(M) = 5”“(07 ')H%{S(M) _§Hu(Ta')H%{5(M)

([ (0= 8 ateyu, (1~ )72 (a, (1~ AYu)

|
=
)

vn)
+ Im(/OT(f, (1 - AYw)zn)-

The notation Re and I'm stand for the real and imaginary part respectively. Since
ug € H¥(M), uw € C([0,T], H*(M)) and then

T
]/0 (1 = A 2a(z)u, (1 — A)~3/2Hq, (1 - A)S]u)LQ(M)\ < clluoll3rs (ar)-
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We have also f € L2([0,T], H*(M)), so

T
‘/0 (f, (1_A>SU)L2(M)‘ < clluollmsany 1 | 20,170,125 (1))

< clluollFreary + 1122000 77,225 (ary)-
Consequently
T 2 2 2
/0 lawullzrsraary < cllluollzrscary + 11122079, m5 (ar)) -
This completes the Proof of Lemma 1. O

Now, let us define the microlocal regularity needed in the next proposition.

DEFINITION 1 Let p € T*M \ {0}, s € R and T > 0, we say that u € L}

loc

((0,T), H*(p)) if there exists a 0-order pseudo-differential operator x(z, D), elliptic
in p, such that

X(.’IZ, DLE)U € L1200<(O7 T)? HS(M))
Moreover we denote by I', the geodesic ray starting at p.

The key point in the Proof of Theorem 1 is the following propagation of regularity.

Proposition 2

With the notation above, let u be a solution of (8) with uyp € H*(M) and f €
L2([0,T], H*(M)). Let pg € T*M \ {0} and assume that

u € Line((0,T), H**(pp))-
Then, for every p1 € ', we have
u € Line((0,T), H**(p1)).
For the proof of this proposition we need the following lemma.

Lemma 2

Let po € T*M \ {0}. There exists a conical neighborhood Uy of pg satisfying the
following:

For every conical neighborhood Uy CC Uy of pg and k(x,§) a symbol of order v
supported in Us, there exists a unique symbol q(x,€&) on Uy of order v — 1 satisfying

{ Hyq=k
Supp(Q) C UTZO(I)T(U2)

(9)

where H,, is the Hamiltonian vector field associated to p(z,£) = |¢|*> and ®, is the
bicharacteristic flow of A.
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Proof of Lemma 2. Set p(z,§) = |£|. First, we can verify that the bicharacteristic
curve of H; starting from po = (x0,&o) coincides with that one of H, starting from the

same point. Second, we have H; = éa% then, setting y = (x, g) and t = ||, we

can consider H as a vector field on S*(M) x R, where S*(M) = {{ € T*M , [{| = 1}.

Since &y # 0, there exists a neighborhood V; of yg = (a:o, éo) and a C'*°diffeomophism
0

defined on V; transforming yo to (0,0) and the vector field H; to dy,. Therefore, we
try to solve the following differential equation

oy
q=0 for y1 negative enough

{ 8q _k(yvt)? (yvt) € Ul (10)

where Uy = Vi x R is a conical neighborhood of pg.

If we choose Vo CC Vi a neighborhood of yg = 0 and k a symbol of order v
supported in Uy = V5 x R%, then the solution ¢ of (10) is a symbol on U; of order v
satisfying

supp(q) C (UTZQ(pT(‘/Q)) X Ri = UTZ()(I)T(UQ).

Finally, it is easy to see that the function 4 satisfies (9). O

€l

Proof of Proposition 2. The proof is similar to that of [9]. In fact, we will just show
that one can reproduce it by adding the regularizing term ia(z)(1 — A)%a(x)u.

We argue by contradiction. Suppose that the set of ¢ > 0 such that u ¢
L2 ((0,7), H**(®4(po))) is not empty and denote by ¢; the infinimum bound of this
set. It is clear that the set

{p e T"M\{0}; u ¢ L. ((0,T), H* *(p))}

is closed in T*M \ {0}, so u & L2 _((0,T), H**%(py := ®¢,(po)))-

loc
We will prove that u € L2 .((0,T), H*"*(p;)), which contradicts our assumption.
1 -1
First we regularize u by taking u, = (1 — —2A) u. Consider U; a conical
n
neighborhood of p; provided by Lemma 2 and choose 0 < to < t; and a small conical

neighborhood W of pa = ®,(po) such that

loc (11)

ue LE ((0,T), Ht%(p)) forallpe W
W c Us.

Let 6 > 0 be small enough such that ¢(7)pg € W for |7 —t3| < 20. Next, we fix a
symbol x of order zero supported in U; and verifying

e x =1 in a conical neighborhood of points ¢(7)pg for 7 € [t2 + 9, t1],

)
e x =0 in a conical neighborhood of points ¢(7)po for 7 < to + 7
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Then, we consider a small conical neighborhood U of p; such that
UccU;, x=1inU and (Ur<o®,(U))Nsupp(Hpyx) C W.

Now, let ¢(z, &) be a symbol of order s + «, supported in U and elliptic at p;. From
Lemma 2, there exists a symbol q on U; of order 2s + 2a — 1 verifying

Hpq = |C‘2’
12
{ supp(q) C Ur<o®-(U). (12)

Set b = xq. It is easy to verify that b is a symbol of order 2s + 2o — 1 satisfying
Hpb = |c|* +,

where r(z,§) = ¢H,X is, by construction, a symbol of order 2s + 2« supported in W.
By hypothesis we have

/ 0(t)(r(w, Dy )tn, un) L2(anydt < Cte,

where 0(t) € C§°((0,7)).
So, to prove our result it is sufficient to show that

T
\/ O)([A. Blun, ) p2(an)dt| < Cte.
0

Set P = i0, — A + B, and A(t,x,D,) = 0(t)B(x, D,), where B(xz,D,;) = Op(b).
Denoting (,) the inner product in L2((0 T) x M), we have
(Pup, A%up) — (Aup, Puyp) = ([A, Alun, uy) — i(0' Bup, uy,) (13)
+ 2i(BgAun, up) + i([A, Ba|tn, up).

Since (uy) and (Puy,) are uniformly bounded in L?([0,T], H(M)), the left hand side
of (13) (¢' Buy,uy,) and ([A, Bg]un, u,) are uniformly bounded. It remains to verify
|(BaAup, uy)| < Cte. We have

(BaAuy,up) = (1 — A)*Aauy, auy,) + (1 — A)*a, Alup, auy,) .
Using Lemma 1, one has

(1 = A)*Aauy,, auy,)| = [((1 = A)~6/242/2) Aqu,, (1 — A) 2T/ qq,,)|

IN

cHaunH%Q([O’TLHHa) < Cte.

On the other hand (1 — A)%[a, A] is of order 2s + 2a — 1 and 2o — 1 < 0 then
((1 = A)[a, Alup, auy,) is uniformly bounded.
Consequently

(A, Altn, un)| = \/ (A, Blun, un) p2anydt] < Cte

which yields the desired result. ([
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4. Proof of Theorem 1

To prove our theorem we will give the following proposition, which yields (3) and (4)
and will be useful to the proof of (5).
Proposition 3

Under hypotheses of Theorem 1, consider T > 0, ug € H*(M) (s € R), f €
L3([0,T], H*(M)) and u solution of (8) then

u € L3 .((0,T), HT*(M)). (14)

loc

Furthermore, for every 6 € C§°((0,T)), there exists ¢ > 0 such that

10ull L2, mrsvearyy < €Ulwoll s ary) + 11 L2 o.27,15 (1)) (15)

Proof of Proposition 3. We first prove (14). Fix pg € T*(M) and denote 7 the
bicharacteristic issued from gy. By the geometric control assumption, = intersects the
region T*(w) in some point p;. Therefore by Lemma 1 u € L2 ((0,T), H**%(py)).

loc

Applying the regularity propagation result (Proposition 2), we conclude that u €
L2 ((0,7), H**(pg)). This is true for all pg € T*(M), hence u € L _((0,T), H¥*%(M)).
To prove the estimate (15), we consider

U HS(M) x L2([0,T), H(M)) — L3R, Hs**(M))

(wa, ) — 0(6) (e oo + [ et (7, yir)

where 6 € C§°((0,T)).
By the argument above, ¥ is well defined and continuous by virtu of the closed
graph theorem. This completes the proof of (15). ([

Now we come to the proof of (5). Let vg € H*(M), using Proposition 3,
v = ey e L2 ((0,400), H (M)

so
v(t,.) € H (M), for almost all ¢ € (0,4+00).

Using again the previous result, we obtain v € L2 .((0, +00), H¥72%(M)). By iteration
we conclude that
ve L3 ((0,+00), H¥(M)),  VkeN.
Using the equation satisfied by v, we check easily that
atv € L1200<(07 +OO)7 Hk(M))a

which means
CAS Hlloc((07 +OO), Hk(M))

Repeating this process, we obtain
ve HE.((0,400), H¥(M)),  VkeN.
So we conclude that v € C*°((0, +00) x Q).
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Finally, the closed graph theorem applied to the map

¢ H(M) — HFRxM)
V0 —  p(t)et g

where £ € N and ¢ € C§°((0,+00)), and the classical Sobolev embedding yield the
estimate (6) and conclude the Proof of Theorem 1. O
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