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José I. Burgos Rosa M. Miró-Roig (Managing Editor) Joaquim Ortega-Cerdà
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Département de Mathématiques Faculté des Sciences de Bizerte et LAMSIN 1060 Tunis, Tunisia,

E-mail: Lassaad.Aloui@fsg.rnu.tn

Received March 3, 2007. Revised September 28, 2007.

Abstract

We prove smoothing effect for solutions of a regularized Schrödinger equation

on compact manifolds under the hypothesis of the Geometric control.

1. Introduction

It is well known that the solution of the free Schrödinger equation{
i∂tu−Δu = 0 in R × Rd

u(0, .) = u0 in Rd,
(1)

satisfies the following smoothing effect

(i)
∫

R

∫
|x|<R

|(1−Δ)1/4u(t, x)|2dxdt ≤ cR ‖u0‖L2(Rd) ,

for all u0 ∈ L2(Rd) and all nonnegative R.

(ii) u ∈ C∞(R \ {0} × Rd),

for all u0 ∈ L2(Rd) with a compact support.

∗ The author is supported by Tunisian Ministry for Scientific Research and Technology, within the
LAB-STI 02 program.
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The property (i) implies that u(t, x) belongs, for almost all t, to the local Sobolev
space H1/2

loc (Rd). It has been, first, observed by Sjölin [18], Vega [19] and Constantin-
Saut [7] and it was later generalized to different perturbations of the flat Laplacian (see
Ben Artzi-Klainerman [4], Ben Artzi-Devinatz [3] Constantin-Saut [8] and Döı [11, 12]).

In the case of exterior non-trapping domain, Burq, Gerard and Tzvetkov [5] proved
the smoothing effect for Schrödinger equation with Dirichlet condition. This result was
proved in [6] with loss of ε- derivatives for some captive geometry.

Döı [10] has proved that, for Schrödinger operators in Rd, the non trapping as-
sumption is necessary for the H1/2 smoothing effect. This result has been extended to
the case of boundary value problems by Burq [6].

As a conclusion, we can assert that the smoothing property for Schrödinger equa-
tion is equivalent to the non trapping condition.

Furthermore, what concerns the wave equation, this non trapping condition has
also a relationship with the problem of the uniform local energy decay. Indeed this
decay is equivalent to the non trapping hypothesis (see [14] for the necessary condition
and [13] for the sufficiency ).

In the captive case, the stabilization of the wave equation was achieved by adding
a dissipative term of type a(x)∂tu. Under a microlocal geometric assumption called
“geometric control”, J. Rauch and M. Taylor [16] proved the uniform energy decay for
the dissipative wave equation on compact manifold (where all rays are captive). This
result was extended to the case of manifolds with boundary by C. Bardos, G. Lebeau
and J. Rauch [2] (see [1] for exterior domain).

By analogy with the stabilization problem for the wave equation we are interested,
in this paper, in producing the smoothing effect “by force” for Schrödinger equation on
compact manifolds by adding to the equation a regularizing term ia(x)(1−Δ)αa(x)u,

where a is a real valued smooth function and 0 < α ≤ 1
2
.

More precisely, when M is a compact connected Riemannian manifold of dimen-
sion d ≥ 2 and Δ the corresponding Laplace-Beltrami operator, we consider the fol-
lowing regularized Schrödinger equation{

i∂tu−Δu+ ia(x)(1−Δ)αa(x)u+R0u = 0 in R+ ×M

u(0, .) = u0 in M.
(2)

Here 0 < α ≤ 1
2
, a(x) ∈ C∞(M) and R0 is a pseudo-differential operator of order zero.

In Section 2 we will prove that the problem (2) is well posed in Hs(M) for all
s ∈ R and we will denote by (U(t))t≥0 the semi group which generates its solution:
u(t, .) = U(t)u0.

The aim of this article is to establish, under the “geometric control” condition,
some smoothing effects for equation (2). More precisely we have.



Smoothing effect for regularized Schrödinger equation on compact manifolds 55

Theorem 1

Assume that ω = {a(x) �= 0} controls geometrically M , i.e every geodesic of M
enters the set ω. Then the following hold:

(a) For T > 0 and f ∈ L2([0, T ], Hs(M)), we have

u ∈ L2
loc((0, T ), Hs+α(M)) (3)

where u(t, .) =
∫ t

0
U(t− τ)f(τ, .)dτ, (t ≥ 0).

Furthermore, for every θ ∈ C∞0 ((0, T )), there exists c > 0 such that

‖θu‖L2(R,Hs+α(M)) ≤ c ‖f‖L2([0,T ],Hs(M)) . (4)

(b) Let v0 ∈ Hs(M), we have

v ∈ C∞((0,+∞)×M) (5)

where v is the solution of (2) with initial data v0.
Furthermore, for every ϕ ∈ C∞0 ((0,+∞)), β ∈ Nd+1 there exists c > 0 such that

sup
(t,x)∈R×M

|Dβ(ϕv)(t, x)| ≤ c ‖v0‖Hs(M) (6)

Remark 2 Taking into account that our problem is on compact manifold, any gain
of δ-regularity (δ > 0) with respect to initial data leads by iteration to C∞ smoothing
effect. That is to say that, outside any neighborhood of t = 0, our result is still the
same as the (i) type of smoothing estimate, for which the nontrapping condition is
necessary. Therefore, we can say that the necessity of our geometric control condition
is not clear; this constitutes an open problem.

We conclude this introduction with a short description of Proof of Theorem 1.
We first check that if u0 ∈ Hs(M) and f ∈ L2([0, T ];Hs(M)) then the function

u = U(t)u0 +
∫ t

0
U(t− τ)f(τ, .)dτ ∈ L2([0, T ];Hs+α(ω))

(Lemma 1). Then, we prove that the L2
loc((0, T );Hs+α) regularity propagates over the

bicaracteristic flow of Δ for solutions of (2) (Proposition 1). The proof of this result
is very similar to the one of [9]. Using the propagation of regularity we deduce that
u ∈ L2

loc((0, T );Hs+α(M)) which yields (3). Applying the closed graph theorem, we
obtain the estimate (4) (Proposition 3). The proof of the C∞ smoothing effect (5)
is completed by iteration of the previous regularity result for f = 0. Finally, using,
once again, the closed graph theorem and the Sobolev embedding, we deduce the
estimate (6).

The rest of this article is organized as follows:
2) Well-posedness.
3) Propagation of regularity.
4) Proof of Theorem 1.
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2. Well-posedness

In this section we establish that the Cauchy problem (2) is well posed in Hs(M)
(s ∈ R).

We denote by Aa = −iΔ − a(x)(1 − Δ)αa(x) + iR0 the unbounded operator
defined on L2(M) with domain D(Aa) = {f ∈ L2(M);Aaf ∈ L2(M)} and set Ba =
a(x)(1−Δ)αa(x).

Proposition 1

The problem (2) is well posed in Hs(M) (s ∈ R).

Proof. We begin by proving the proposition for s = 0. Let f ∈ D(Aa), we have

Re(Aaf, f) = −‖(1−Δ)α/2a(x)f(x)‖2L2(M) + Im(R0f, f)
≤ c‖f‖2L2(M),

so Aa − c is dissipative. It remains to show that the operator Aa − c is maximal.
Let g ∈ L2(M), we look for f ∈ D(Aa) satisfying f −Aaf + cf = g, i.e.

iΔf + a(x)(1−Δ)αa(x)f + (1 + c)f = g in M.

Let us define the bilinear form

b : H1(M)×H1(M) −→ C

(f, h) 
−→
∫
M

(−i∇f∇h+ (1 + c)fh̄+ (1−Δ)α/2af(1−Δ)α/2ah)dx

and the linear form
L : H1(M) −→ C

h 
−→
∫
gh.

It is easy to see that b and L are continuous and that

∀f ∈ H1(M), |b(f, f)| ≥ ‖f‖2H1 .

Hence b is coercive. According to the Lax Milgram theorem, there exists a unique
f ∈ H1(M) such that

b(f, h) = L(h),∀h ∈ H1(M).

We deduce that

iΔf + a(x)(1−Δ)αa(x)f + (1 + c)f = g in D′(M)

then Δf ∈ L2(M) and so f ∈ D(Aa).
The operator Aa − c is maximal and dissipative, therefore according to the Hille-

Yoshida theorem [17], Aa generates a semi group (U(t))t≥0 such that if f ∈ L2(M)
then U(t)f ∈ C([0,+∞), L2(M)) is the unique solution of (2).

Now, we prove the well posedness of problem (2) in Hs(M), s ∈ R.
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Let u0 ∈ Hs(M), set v0 = (1 − Δ)s/2u0 ∈ L2(M) and consider the following
problem {

i∂tv −Δv + iBav +G0v = 0 in R+ ×M

v(0, .) = v0 in M,
(7)

where
G0 = R0 + [(1−Δ)s/2, iBa +R0](1−Δ)−s/2,

is a pseudo-differential of order zero. Taking into account what precedes, problem (7)
admits a unique solution v ∈ C(R+, L

2(M)). Set u = (1−Δ)−s/2v ∈ C(R+, H
s(M)),

it is easy to see that u is the unique solution of the problem (2). �

3. Propagation of regularity

We are interested, in this section, in the regularity of solutions of the following problem{
i∂tu−Δu+ ia(x)(1−Δ)αa(x)u = f

u(0, .) = u0,
(8)

where 0 ≤ α ≤ 1
2
.

The following lemma shows that the new term (ia(x)(1−Δ)αa(x)u) goes in the
“right way”, in the sense that it guarantees the smoothness of solutions of (8) over the
regularizing set ω = {x ∈M, a(x) �= 0}.

Lemma 1

Let u0 ∈ Hs(M), s ∈ R and f ∈ L2([0, T ], Hs(M)), if u is a solution of (8), then
au ∈ L2([0, T ], Hs+α(M)). Furthermore, there exists c > 0 such that∫ T

0
‖au‖2Hs+α(M) ≤ c

(
‖u0‖2Hs(M) + ‖f‖2L2([0,T ],Hs(M))

)
.

Proof. We multiply (8) by (1 − Δ)sū, we integrate over [0, T ] × M and take the
imaginary part. We obtain∫ T

0
‖au‖2Hs+α(M) =

1
2
‖u(0, .)‖2Hs(M) −

1
2
‖u(T, .)‖2Hs(M)

− Re
( ∫ T

0

(
(1−Δ)s/2a(x)u, (1−Δ)−s/2+α[a, (1−Δ)s]u

)
L2(M)

)
+ Im

( ∫ T

0
(f, (1−Δ)su)L2(M)

)
.

The notation Re and Im stand for the real and imaginary part respectively. Since
u0 ∈ Hs(M), u ∈ C([0, T ], Hs(M)) and then

∣∣∣ ∫ T

0

(
(1−Δ)s/2a(x)u, (1−Δ)−s/2+α[a, (1−Δ)s]u

)
L2(M)

∣∣∣ ≤ c‖u0‖2Hs(M).
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We have also f ∈ L2([0, T ], Hs(M)), so

∣∣∣ ∫ T

0
(f, (1−Δ)su)L2(M)

∣∣∣ ≤ c‖u0‖Hs(M)‖f‖L2([0,T ],Hs(M))

≤ c
(
‖u0‖2Hs(M) + ‖f‖2L2([0,T ],Hs(M))

)
.

Consequently ∫ T

0
‖au‖2Hs+α(M) ≤ c

(
‖u0‖2Hs(M) + ‖f‖2L2([0,T ],Hs(M))

)
.

This completes the Proof of Lemma 1. �

Now, let us define the microlocal regularity needed in the next proposition.

Definition 1 Let ρ ∈ T �M \ {0}, s ∈ R and T > 0, we say that u ∈ L2
loc

((0, T ), Hs(ρ)) if there exists a 0-order pseudo-differential operator χ(x,Dx), elliptic
in ρ, such that

χ(x,Dx)u ∈ L2
loc((0, T ), Hs(M)).

Moreover we denote by Γρ the geodesic ray starting at ρ.

The key point in the Proof of Theorem 1 is the following propagation of regularity.

Proposition 2

With the notation above, let u be a solution of (8) with u0 ∈ Hs(M) and f ∈
L2([0, T ], Hs(M)). Let ρ0 ∈ T �M \ {0} and assume that

u ∈ L2
loc((0, T ), Hs+α(ρ0)).

Then, for every ρ1 ∈ Γρ0 , we have

u ∈ L2
loc((0, T ), Hs+α(ρ1)).

For the proof of this proposition we need the following lemma.

Lemma 2

Let ρ0 ∈ T �M \ {0}. There exists a conical neighborhood U1 of ρ0 satisfying the
following:

For every conical neighborhood U2 ⊂⊂ U1 of ρ0 and k(x, ξ) a symbol of order ν
supported in U2, there exists a unique symbol q(x, ξ) on U1 of order ν − 1 satisfying{

Hpq = k

supp(q) ⊂ ∪τ≥0Φτ (U2)
(9)

where Hp is the Hamiltonian vector field associated to p(x, ξ) = |ξ|2 and Φτ is the
bicharacteristic flow of Δ.
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Proof of Lemma 2. Set p̃(x, ξ) = |ξ|. First, we can verify that the bicharacteristic
curve of Hp̃ starting from ρ0 = (x0, ξ0) coincides with that one of Hp starting from the

same point. Second, we have Hp̃ =
ξ

|ξ|∂x, then, setting y =
(
x,

ξ

|ξ|
)

and t = |ξ|, we

can consider Hp̃ as a vector field on S�(M)×R�
+, where S�(M) = {ξ ∈ T �M , |ξ| = 1}.

Since ξ0 �= 0, there exists a neighborhood V1 of y0 =
(
x0,

ξ0
|ξ0|
)

and a C∞diffeomophism

defined on V1 transforming y0 to (0, 0) and the vector field Hp̃ to ∂y1 . Therefore, we
try to solve the following differential equation⎧⎨⎩

∂q

∂y1
= k(y, t), (y, t) ∈ U1

q = 0 for y1 negative enough
(10)

where U1 = V1 × R�
+ is a conical neighborhood of ρ0.

If we choose V2 ⊂⊂ V1 a neighborhood of y0 = 0 and k a symbol of order ν
supported in U2 = V2 × R�

+, then the solution q of (10) is a symbol on U1 of order ν
satisfying

supp(q) ⊂ (∪τ≥0Φτ (V2))× R�
+ = ∪τ≥0Φτ (U2).

Finally, it is easy to see that the function
q

|ξ| satisfies (9). �

Proof of Proposition 2. The proof is similar to that of [9]. In fact, we will just show
that one can reproduce it by adding the regularizing term ia(x)(1−Δ)αa(x)u.

We argue by contradiction. Suppose that the set of t > 0 such that u /∈
L2
loc((0, T ), Hs+α(Φt(ρ0))) is not empty and denote by t1 the infinimum bound of this

set. It is clear that the set

{ρ ∈ T �M \ {0}; u /∈ L2
loc((0, T ), Hs+α(ρ))}

is closed in T �M \ {0}, so u /∈ L2
loc((0, T ), Hs+α(ρ1 := Φt1(ρ0))).

We will prove that u ∈ L2
loc((0, T ), Hs+α(ρ1)), which contradicts our assumption.

First we regularize u by taking un =
(
1 − 1

n2
Δ
)−1

u. Consider U1 a conical
neighborhood of ρ1 provided by Lemma 2 and choose 0 < t2 < t1 and a small conical
neighborhood W of ρ2 = Φt2(ρ0) such that

{
u ∈ L2

loc((0, T ), Hs+α(ρ)) for all ρ ∈W
W ⊂ U1.

(11)

Let δ > 0 be small enough such that φ(τ)ρ0 ∈ W for |τ − t2| < 2δ. Next, we fix a
symbol χ of order zero supported in U1 and verifying

• χ ≡ 1 in a conical neighborhood of points φ(τ)ρ0 for τ ∈ [t2 + δ, t1],

• χ ≡ 0 in a conical neighborhood of points φ(τ)ρ0 for τ < t2 +
δ

2
.
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Then, we consider a small conical neighborhood U of ρ1 such that

U ⊂⊂ U1 , χ ≡ 1 in U and (∪τ≤0Φτ (U)) ∩ supp(Hpχ) ⊂W.

Now, let c(x, ξ) be a symbol of order s + α, supported in U and elliptic at ρ1. From
Lemma 2, there exists a symbol q on U1 of order 2s+ 2α− 1 verifying{

Hpq = |c|2,
supp(q) ⊂ ∪τ≤0Φτ (U).

(12)

Set b = χq. It is easy to verify that b is a symbol of order 2s+ 2α− 1 satisfying

Hpb = |c|2 + r,

where r(x, ξ) = qHpχ is, by construction, a symbol of order 2s+ 2α supported in W .
By hypothesis we have∫ T

0
θ(t)(r(x,Dx)un, un)L2(M)dt ≤ Cte,

where θ(t) ∈ C∞0 ((0, T )).
So, to prove our result it is sufficient to show that∣∣∣ ∫ T

0
θ(t)([Δ, B]un, un)L2(M)dt

∣∣∣ ≤ Cte.

Set P = i∂t − Δ + iBa and A(t, x,Dx) = θ(t)B(x,Dx), where B(x,Dx) = Op(b).
Denoting (, ) the inner product in L2((0, T )×M), we have

(Pun, A�un)− (Aun, Pun) = ([A,Δ]un, un)− i(θ′Bun, un)

+ 2i(BaAun, un) + i([A,Ba]un, un).
(13)

Since (un) and (Pun) are uniformly bounded in L2([0, T ], Hs(M)), the left hand side
of (13) (θ′Bun, un) and ([A,Ba]un, un) are uniformly bounded. It remains to verify
|(BaAun, un)| ≤ Cte. We have

(BaAun, un) = ((1−Δ)αAaun, aun) + ((1−Δ)α[a,A]un, aun) .

Using Lemma 1, one has

|((1−Δ)αAaun, aun)| = |((1−Δ)−(s/2+α/2)Aaun, (1−Δ)(s/2+α/2)aun)|
≤ c‖aun‖2L2([0,T ],Hs+α) ≤ Cte .

On the other hand (1 − Δ)α[a,A] is of order 2s + 2α − 1 and 2α − 1 ≤ 0 then
((1−Δ)α[a,A]un, aun) is uniformly bounded.

Consequently

|([Δ, A]un, un)| =
∣∣∣ ∫ T

0
θ(t)([Δ, B]un, un)L2(M)dt

∣∣∣ ≤ Cte

which yields the desired result. �
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4. Proof of Theorem 1

To prove our theorem we will give the following proposition, which yields (3) and (4)
and will be useful to the proof of (5).

Proposition 3

Under hypotheses of Theorem 1, consider T > 0, u0 ∈ Hs(M) (s ∈ R), f ∈
L2([0, T ], Hs(M)) and u solution of (8) then

u ∈ L2
loc((0, T ), Hs+α(M)). (14)

Furthermore, for every θ ∈ C∞0 ((0, T )), there exists c > 0 such that

‖θu‖L2(R,Hs+α(M)) ≤ c(‖u0‖Hs(M)) + ‖f‖L2([0,T ],Hs(M))) (15)

Proof of Proposition 3. We first prove (14). Fix ρ0 ∈ T �(M) and denote γ the
bicharacteristic issued from �0. By the geometric control assumption, γ intersects the
region T �(ω) in some point ρ1. Therefore by Lemma 1 u ∈ L2

loc((0, T ), Hs+α(ρ1)).
Applying the regularity propagation result (Proposition 2), we conclude that u ∈
L2
loc((0, T ), Hs+α(ρ0)). This is true for all ρ0 ∈ T �(M), hence u ∈ L2

loc((0, T ), Hs+α(M)).
To prove the estimate (15), we consider

Ψ : Hs(M)× L2([0, T ], Hs(M)) −→ L2(R, Hs+α(M))

(u0, f) 
−→ θ(t)
(
etAau0 +

∫ t

0
e(t−τ)Aaf(τ, .)dτ

)
where θ ∈ C∞0 ((0, T )).

By the argument above, Ψ is well defined and continuous by virtu of the closed
graph theorem. This completes the proof of (15). �

Now we come to the proof of (5). Let v0 ∈ Hs(M), using Proposition 3,

v = etAav0 ∈ L2
loc((0,+∞), Hs+α(M))

so
v(t, .) ∈ Hs+α(M), for almost all t ∈ (0,+∞).

Using again the previous result, we obtain v ∈ L2
loc((0,+∞), Hs+2α(M)). By iteration

we conclude that
v ∈ L2

loc((0,+∞), Hk(M)), ∀k ∈ N.

Using the equation satisfied by v, we check easily that

∂tv ∈ L2
loc((0,+∞), Hk(M)),

which means
v ∈ H1

loc((0,+∞), Hk(M)).

Repeating this process, we obtain

v ∈ Hk
loc((0,+∞), Hk(M)), ∀k ∈ N.

So we conclude that v ∈ C∞((0,+∞)× Ω).
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Finally, the closed graph theorem applied to the map

φ : Hs(M) → Hk(R ×M)
v0 
→ ϕ(t)etAav0

where k ∈ N and ϕ ∈ C∞0 ((0,+∞)), and the classical Sobolev embedding yield the
estimate (6) and conclude the Proof of Theorem 1. �
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fruitful discussions and his kind support.
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