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ABSTRACT

Let C' be a smooth integral projective curve admitting two pencils gtll and gg
such that g; + gg is birational. We give conditions in order that the complete
linear system |s g; + rgg| be normally generated or very ample.

1. Introduction

Given a smooth projective curve C', the most natural embeddings of C in projective
spaces are the projectively normal ones, i.e. those such that the restriction maps
H0Opn(m) — HYOc(m) are surjective for all m > 0. It is a natural problem to
construct such embeddings with P™ of smallest possible dimension. If £ is a very
ample line bundle on C' such that the linear system |.Z’| provides a projectively normal
embedding one says that £ (or the linear system |.Z|) is normally generated. A
famous theorem of M. Noether says that, for non-hyperelliptic curves, the canonical
line bundle is normally generated. A well-known general criterion for the normal
generation of a line bundle is Theorem 1 of [6] where it is proven that if £ is very
ample and deg .Z > 2g + 1 — 2h!'.% — Cliff C then .Z is normally generated. Moreover
in Theorem 3 of [6] a necessary and sufficient condition for the normal generation
of a line bundle .Z is given, provided that deg.Z is greater or equal approximately
3g/2. If one looks for normally generated (possibly special) line bundles of smaller
degrees, one is forced to consider particular line bundles, whose existence depends on
geometrical properties of the curve C'. The most basic geometrical property of a curve

Keywords: Algebraic curves, line bundles, projective normality, normal generation.
MSC2000: Primary: 14H45. Secondary: 14H51.

239
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is the existence of pencils of divisors gl on C. In this paper we deal with curves C
on which there exist two independent pencils gl and gg. By independent pencils we
mean that gl + gl}, i.e. the smallest linear system containing the sums D + E with
Decgland E € gg, defines a map to P2 birational on the image. This image will be an
integral curve in a smooth quadric Q C P3 of class (a,b) € PicQ = Z® Z. In this case
one can produce projectively normal embeddings of C' by some of the complete linear
systems |sg} + rg,ﬂ, i.e. the complete linear systems associated to a divisor of the form
sD+rE with D € gl and E € gg, often in degrees not satisfying Green and Lazarsfeld
conditions above. The main object of this paper is to give conditions for r, s € Z such
that the linear systems |sgl + rgg] are very ample and normally generated. We reduce
the problem to studying the linear systems |&¢(r, s)| on curves on P! x P!, by means of
the birational embedding above. For (r,s) > (0,0) we are able to completely classify
which |O¢(r, s)| are very ample and normally generated. We also make a complete
study of the very ampleness of |O¢(r, —1)| with > 0 and we give many examples of
curves C' C Q such that & (r,—1) is not normally generated.

The computation of the dimension of the linear systems |0 (r, —s)| for r > a,
s > 2 is the object of a conjecture on the multiplication structure of the deficiency
module of Q (see 8.1). More precisely, we conjecture that such line bundles have natural
cohomology if C' is general and we prove it in the extremal cases (Proposition 8.2).

In Section 5 we apply our results to produce projectively normal embeddings of
general trigonal curves into projective spaces P™ with n ~ ¢/3.

2. Preliminaries

In this paper by curve we mean a 1-dimensional locally Cohen-Macaulay projective
scheme defined over an algebraically closed field k. First of all we state a very ampleness
criterion for linear systems on a reduced curve.

Let .Z be a line bundle on a curve C and let ¥ C H.Z be a vector sub-space of
global sections. Let Z C C be any zero-dimensional sub-scheme. Once an isomorphism
L ROz = 0y is fixed, we will call the restriction map X' @ O¢ — £ ® Oz = 0y the
evaluation map. When it is onto, we will say that X separates Z.

Lemma 2.1

Let C be any reduced curve and let |X| C |H.Z| be any linear system on C.
Then |X¥| embeds C' as a closed sub-scheme of some projective space if and only if ¥
separates Z for any length 2 zero-dimensional sub-scheme Z C C.

We omit the easy proof of this lemma.

A line bundle . on a curve C, or its associated linear system |.Z|, is said to be
normally generated if % is very ample and the curve C' C P(H°.Z) = P", image of C by
a map associated to the complete linear system |.Z|, is arithmetically Cohen-Macaulay
(ACM for short). This means that for any m > 1 the multiplication map H'.Z ®
HO 2™ — HO 2™+ i5 surjective or, equivalently, that Hiﬂc/ = ®n>oH' I (n) =0,
with .7, the ideal sheaf of C’. When C’ is smooth the ACM property coincides with
projective normality.
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We recall that if H'.Z = 0 and . is very ample, then . is normally generated
if H'.¢ @ H'.¥Y — H°.#? is surjective; this is a consequence of the base point free
pencil trick (see for example [1, Chapter III, Section 3]).

Now we will consider birational morphisms 1 : C — C between integral curves.
By means of the following lemma, one is able to transfer the property of very ampleness
and normal generation of non-special line bundles on C' to their pull-backs on C.

Lemma 2.2

Let C be an integral projective curve and let ) : C — C be a birational morphism.
Let £ be a line bundle on C with H'.¥ = 0. If £ is very ample on C then n*.% is
very ample on C' and if % is normally generated on C then n*.% is normally generated
on C.

Proof. Let us consider the exact sequence of sheaves 0 — ﬁg — n.0¢c — N — 0, with
A a sheaf supported on the singular locus of C. If [ = length(.4), then | = p,(C) —
pa(C). Moreover, from the exact sequence above we get 0 — & — n.n*.L — A — 0,
hence, by the hypothesis that H'.Z = 0, we get H'(n*.#) = 0 and the exact sequence

0— H'Y - H'(n*%) — H'.¥ — 0.

In particular h0(n*.%) = h0.Z 4+ 1 and we set P" = P(H'.Z), P™ = P(HO(n*.2)).
Since |.Z| is very ample on C it induces an embedding ¢ : C' — P7, and |n*.%] is base-
point free because |.Z| C [n*.Z| is. So we get a map v : C — P"! and a projection
7P — P7, with vertex P(HY.4), such that 770{/; =1 on. Denoting C =Im, we
get that 1 decomposes as C — C — C, and from the exact sequence

0— H00(1) = HYO5(1) — HO.4 — 0,

it easily follows that p,(C)—pa(C) = I, hence pa(C) = pa(C). It follows that ¢ : C — C

is an isomorphism, i.e. |n*.Z| is very ample.

Now assume .Z normally generated on C. Since we know that H'(n*.#) = 0
and n*.%Z very ample, to show that n*.Z is normally generated it is sufficient to show
that the multiplication map Sym?H(n*.¢) — H%(n*£?) is onto. Consider the exact
sequence

0> M —>H' L2 YL — L0,

with the last map given by evaluation of sections and .# its kernel, which is a rank r
vector bundle on C. From the assumptions on .% one sees that H'.# = 0. Moreover
we can consider an analogous exact sequence 0 — .#' — H'.Z @ n*¥ — n* L% — 0,
because H'.Z, as a subspace of H%(n*.Z), generates n*.Z since it has no base points.
From the exact sequences

0= L —nn?L—NN—0 and 0— L% 'L -4 -0,

we deduce a commutative diagram:
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0 0 0
| | |

0 — H' 4 —— HY9H'Y —— H'Y> —— 0
| | |

0 — H'\# — H'Y9H%WY — HW¥* —— H' 7
| | |

0 — HQ —— H'YH' WV — H'¥ —— H'Q
| | |
0 0 0

Here Q' is defined as the cokernel of the inclusion .# — n,.#’, and it has 0-dimensional
support since .# and n,.#' have the same rank. The exactness of the third column is
consequence of the fact that H'.%? = 0. The exactness of the first column is provided
by the fact that H'.# = 0; moreover we know that H'Q’' = 0, hence also H'.#' = 0.
The result then follows by looking at the second row. ([

3. The deficiency module

Let Q = P! x P'. We introduce the bigraded ring S = @, yeny HOp(a,b) = @ Sap
and the bi-graded S-module

@Hﬁan @Man

m,ne” m,ne’

We collect all the information we need about Mg in the following theorem, a simple
consequence of Kiinneth decomposition formulas.

Theorem 3.1

The vector space structure of My, is given by

B Hoﬁpl(m)®HlﬁP1(n) form>0, n< -2
Qo H'Cp(m) @ HYOpi(n) form < =2, n>0.

Moreover the multiplication maps

W MQ,m,n ® Sa,b - MQ,m+a,n+b

are surjective.
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For curves on the quadric Q we refer to [3] for notation, properties and further
references. If C' C Q is a curve of type (a,b) > (1,1) we call deficiency module of C
the bigraded S-module D = Mg(—a, —b). Note that D¢ does not vanish only when
m > aand n < b— 2, or when m < a— 2 and n > b. In the picture below the set
of couples (r,s) where D¢ does not vanish is the union of the two rectangles R, Rs.
We also illustrate the various possibilities for the half-lines I = {(pr, ps) : p € N} to
intersect the rectangles Ri,Rs.

(a—2,b)

(a,b—2) I

m

l//

4. Study of |sg! + rg}| with (r,s) > (1,1)
We start with the case of an integral curve C' C Q of type (a,b).

Theorem 4.1
Let C C Q be a curve of type (a,b), let (r,s) > (1,1) . Then

1) if no multiple of (r,s) belongs to R; U Ry then O¢(r,s) is normally generated;

2) if (r,s) ¢ Ry U R, but p(r,s) € Ry UR, for some p > 1 then Oc(r,s) is not
normally generated;

3) if (r,s) € Ry U Ry, then O¢(r,s) is normally generated.

Proof. First we observe that |Og(r,s)| always embeds Q as a projectively normal
surface. This is an easy consequence of the fact that the projective coordinate ring
Rg = ®, HY0q(pr, ps) is generated in degree p = 1. In case 1), denoting #¢ the
ideal sheaf of C'in Q, one has H'.Z:(pr, ps) = 0 for any p > 1, hence the restriction
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HY0g(pr,ps) — H°Oc(pr, ps) is surjective. So the ring R = @D, H°0Oc(pr, ps) is
generated in p = 1 and the curve C' is embedded by |Oc(r, s)| as an ACM curve.

In case 2) we have that the restriction map Rg — Rc¢ is not surjective in those
degrees p such that (pr, ps) € R; U R but it is surjective at p = 1. Hence R¢ cannot
be generated at p = 1, so the embedding is not ACM.

Suppose now that (r,s) € Ry U Ry, so that H'.%(r,s) # 0. From the struc-
tural sequence of C, twisting by (r,s) and taking cohomology, we find H.Z(r, s) =
H'0(r,s) = 0 and the exact sequence

0— HOﬁQ(T, 8) — H°Op(r,s) — H' I (r,s) — 0,

hence HYOp(r,s) = HOﬁQ(T, s) @ H'.Z,(r,s) as vector space, with dimension
00 (r,s) = d + 1 — g. Again, the sheaf O(r,s) is very ample and gives an em-
bedding C' — PV with N =d — g. Let Iev C Opy be the ideal sheaf of C.

To prove that v : HY0, (1)@ HY Oy (n—1) — HO,(n) is surjective it is enough
to prove that ' : H'Oq(r,s) ® HOﬁQ((n — 1), (n—1)s) — H°O(nr,ns) is. Since
HYO(r,s) HOﬁQ(r, s) @ H'.Z(r, s), this map is the direct sum ' = ~{, & 7}, with

Y : HOp(r,s) @ H'Og((n — 1)r, (n — 1)s) — HOq(nr, ns)

and
vy H I (r,8) ® HOﬁQ((n —1)r,(n—1)s) — H'.Z,(nr,ns)

which are both surjective: for v see [5, Lemma 2.3]; for 7{ see Theorem 3.1. ]

From the theorem above and using Lemma 2.2 we deduce the following result in
the abstract curves setting.

Theorem 4.2

Let C be a smooth projective curve admitting two independent pencils of divisors
gl and g}. Let r,s be two positive integers. Then |sgl + rgi| is normally generated
if either (r,s) £ (a — 2,b — 2) and no multiple of (r,s) belongs to Ry U Ry or if
(r,s) € Ry UR,.

Remark 4.3 The result of Theorem 4.2 in some cases gives normally generated line
bundles beyond Green and Lazarsfeld criterion. Consider a birational map n : C' —
C c Q with C of type (a,b). Then p,(C) = (a — 1)(b — 1), the geometric genus
9(C) = pa(C) — 1 for some integer I > 0 and Cliff C < min(a,b) — 2. If we take a < b,
then Cliff C' < a — 2 and 2¢(C) + 1 — Cliff C > 2ab — 3a — 2b + 5 — 2. Choosing for
example r = (a — 1)/2,s = b— 1, one sees that the half line (pr, ps) does not intersect
Ry U Rs, hence Hlﬁa(r, s) = 0. So one can apply Theorem 4.1 and Lemma 2.2
to produce the line bundle £ = n*@%(r,s) on C such that H'(#) = 0, moreover
deg .Z < 2ab—3a—2b+5— 2] when ab > 4a+ 3b— 10+ 4l. This can happen of course
for many choices of a, b if one assumes [ sufficiently small, i.e. when the two pencils g}
and g,} produce a curve C with a small singular locus.

In the particular case that C itself is smooth we do not need to apply Lemma 2.2,
so we do not need to impose H lﬁa(r, s) = 0. This enables one to consider also values
of (r,s) < (a —2,b— 2) such that the half line (pr, ps) does not intersect R; U Ra,
providing ACM embeddings C C P" with n small compared to p,(C).
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5. Example: general trigonal curves

As an application of the preceding results, we now produce some interesting projec-
tively normal embeddings of general trigonal curves of genus g > 5. These embeddings
cannot be achieved by the methods of [6], because we will use linear systems |.Z| with
high speciality h!.Z.

Notation. We adopt the notation |¢] for the maximum integer less or equal to ¢. A
trigonal curve is a curve C admitting a gi. The canonical model C' C P9 ~1is contained
in a rational normal scroll S, isomorphic to a Hirzebruch surface P(Op1 & Op1(e)),
e > 0, generated by the lines (D) for any D € gi. The Maroni invariant m of C can
be defined as the degree in P9~1 of a curve Cy of S such that C? = —e, unique in the
case e > 0. We refer to [9] for a modern account of Maroni’s theory of line bundles
on trigonal curves. If C' is general one knows that m is maximal, more precisely
m = [(g(C) —2)/2], see [9, Corollary 5, p. 177]. We will denote by .7 the line bundle
on C associated to a gi and by J#¢ the canonical line bundle.

Proposition 5.1

A general trigonal curve of even genus g > 6 can be embedded as a projectively
normal curve in P", with n = 2[(g — 2)/6] + 3 and degree d = g + 3 — s/2, with
s=g—2—6[(g—2)/6].

Proof. Let C be a general trigonal curve with g = g(C') > 6 even, so that m = g/2—1.
From [9, Corollary 1, p. 175], one knows that there exists a line bundle .# on C of
degree b= g —m = g/2+ 1 with h°.# = 2, base point free and not composed with .7.
Using the two pencils |.7| = g3 and |.#| = g} one easily sees that C' can be embedded
in P! x P! as a smooth curve of type (3,9/2 + 1). So we can use line bundles of
the form Oc(r,s) = 7° @ .#" and Theorem 4.1 to find projectively normal models
of C in some projective space P". The smallest value of n one can achieve with this
method can be obtained by taking (r,s) = (1,t) with ¢ > (b — 2)/3, so that the half-
line (pr, ps) does not intersect Ry U Ry. More precisely, we take the minimum possible
such ¢, that is t = | (g — 2)/6] + 1. Since HO¢(1,t) = 2(t + 1), we find the desired
result. The value of d is obtained by a straightforward computation, using the formula
d=degOc(1,t) =g/2+ 1+ 3t. O

For completeness, we state without proof a similar result for g odd. This case is more
subtle, since C' will only admit a birational model C C Q with one node. One can
get some good projectively normal embedding of C' by a suitable linear system of the
form |7, =(1,t)| with .7, 7 the ideal sheaf of the node xg € C. We omit the details,
hoping to come back to similar techniques in the future, in greater generality and with
more applications.

Proposition 5.2

A general trigonal curve of odd genus g > 5 can be embedded as a projectively
normal curve in P" with n = 2|(g — 1)/6] + 2 and degree d = g + 2 — s/2, with
s=g—1-6[(g—1)/6].
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Question: Do the values of n in Proposition 5.1 and 5.2 give the minimum possible
dimension of a projective space in which a general trigonal curve of genus g > 5 can
be embedded as a projectively normal curve?

6. Study of |rg}|

Let C' C Q be an integral curve of type (a,b). For every couple (r,—s), r > a, s > 0,
the linear system |0 (r, —s)| has degree d = br — as and dimension > d — g, where
g = (a—1)(b—1) is the arithmetic genus of C. In order to realize H’ O (r, —s) using
bi-homogeneous forms on Q, we prove a technical lemma which will be useful also in
the next sections.

Lemma 6.1

Let C C Q be an integral curve of type (a,b), let y >b—1 and Y = C. (X057 L),
where L) are y + s general (0,1)-lines. Then, for any r > a,s > 0 such that
RO, (r,—s) = d+ 1 —g > 0, the linear system |Oc(r,—s)| is equal to the set
of divisors on C' of the form D.C — Y with D belonging to the linear sub-system
| Ay (r,y)| C |Og(r,y)| of the divisors of bi-degree (r,y) passing through Y. Moreover
|-Zy (r,y)| has no base points out of the scheme Y .

Proof. The first assertion follows by the assumption on the dimension of the series. Set
X = H° #(r,y). It also follows that Y imposes independent conditions to H*O¢(r, y).
From this it is not difficult to see that the restriction X' of X' to any (1,1)-curve I
has degree r + y — n, where n is the degree of the sub-scheme I'.Y, and dimension
r 4+ 1y + 1 —n, so that X' has no base points out of Y, including base points infinitely
near to a point of Y. O

In a similar way one can prove that H°0,(—r, s) is cut by the curves of H° Og(,s)
passing through X = C. (371" L,), where L, are z + r general (1,0)-lines.
Now we study the linear system |0 (r,0)]: we have
0— HOy(r,0) — HOp(r,0) — H' I(r,0) — 0,
from which we see that if 7 < a then H'.7,(r,0) = HlﬁQ(r —a,—b) = 0 so that
HY0(r,0) = HOﬁQ(r, 0) does not define a very ample linear system; for > a we get

W O:(r,0) =h04(r,0) +h' Io(r,0) =r+1+(r—a+1)(b-1)=d+1—g

where d = rb is the degree of the divisor associated to this sheaf, g = (a — 1)(b—1) is
the arithmetic genus of C.

Theorem 6.2

Let C' C Q be an integral curve of type (a,b). Then the linear system |0 (r,0)]
is very ample for any r > a.

Proof. By the previous lemma, taking y > b — 1, the linear system |0 (r,0)]| is cut on
C by the forms in ¥ = HY %y (r,y), with Y = C. (L} +- - -4 L;)) for y general (0, 1)-lines
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L. In view of Lemma 2.1, let Z C C be a length 2 zero dimensional sub-scheme. We
can assume that Z does not intersect any of the lines L/, since these can be chosen in
a general way.

Consider any (1, 1)-curve I containing Z. The argument used at the end of the
proof of Lemma 6.1 shows that the restriction X separates the points of I" out of the
scheme Y. So the evaluation map X' — &7 is onto. O

Theorem 6.3
For any r > a the line bundle O (r,0) is normally generated.

Proof. Denoting by .7, C Oy the ideal sheaf of C' as a subscheme of PN N =d—g,
to show that H'.7,,(n) = 0 for any n we repeat the same argument used for & (r, s)
with (r,s) > (1,1), case 3) of Theorem 4.1. O

Theorem 6.4

Let C' be a smooth projective curve admitting two independent pencils of divisors
g} and g}. Then, for any r > a the linear system |rg}| is normally generated.

Proof. This is an immediate consequence of the preceding theorem, Lemma 2.1 and
Lemma 2.2, observing that H! O5(r,0) =0 for r > a. O

Remark 6.5 It is not difficult to see that the results of Theorem 6.3 and Theorem 6.4
can provide examples of normally generated line bundles beyond Green’s and Lazars-
feld’s sufficient condition.

7. The linear systems |rg} — g

As in the preceding sections, we start with studying linear systems |0¢(r, —1)|, with
r > 0, on integral (a, b)-curves on Q. We will be able to characterize the very-ampleness
of such linear systems. We will also give some counterexamples for the normal gener-
ation property.

From the structural sequence of C' C Q one immediately sees that H O (r, —1) =
H'Og(r—a,—1—b) # 0 for r > a and b > 1, which will be assumed henceforth. Hence
we know that h°Oc(r,—1) = (r + 1 — a)b and H'O¢(r,—1) = 0. By Lemma 6.1 we
represent H°O¢(r, —1) as the restriction to C' of X' = HY.%(r,b) C HYOg(r,b), with
Y = C.(L] +--- + Ly,,), for an arbitrary choice of b+ 1 distinct (0, 1)-lines. In
particular we recall that Y imposes independent conditions to H Oq(r,b) and that X
has no base points out of Y. By Lemma 2.1, the very-ampleness of Y is proved if
one shows that Y separates Z, for any length 2 zero-dimensional Z C C.

Theorem 7.1

Let C C Q be an integral curve of type (a,b) > (1,1). Then for any r > a the
linear system |Oc(r,—1)| is very ample. If r = a, the set of of curves C of type (a,b)
on which |Oc(a, —1)| is not very ample is closed in |0g(a,b)| and has codimension at
least b — 3. In particular if b > 4 and C' is general, then |O¢(a,—1)| is very ample.
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Proof. Take any zero-dimensional sub-scheme Z C C' of length 2. We distinguish the
cases r > a Or 7 = a.

Case r > a. Assume Z is contained in a (1,0) line L, which we may assume not passing
through any point of Y by a general choice of the L} and by the irreducibility of C'.
Then we consider the restriction X7, of X' to L, which gives a linear system of degree b
and vector space dimension equal to dim X' — dim %’ with X’ the linear sub-space of X
of the forms divided by L. We may identify X’ with the sub-space of HOg(r — 1,b)
of forms vanishing on Y. Since 7 —1 > a we have that X7, represents HO¢(r —1,—1)
and, as a consequence, Y imposes independent conditions to H OﬁQ(r —1,b) as well.
So dim X, = h90q(r,b) — h°0g(r — 1,b) = b+ 1 and therefore Xy, is very ample on
L. So X separates Z as well.

Now assume Z is not contained in any (1,0)-line. Take any divisor D of type
(r—1,b) passing through Y, not intersecting Z, which exists since the space of sections
X' C H%0g(r—1,b) representing |0c(r—1, —1)| has no base points out of Y. Consider,
for any (1,0)-line L intersecting Z, the divisor D + L; it is clear that divisors of this
form separate Z, no matter whether it is reduced or not.

Case r =a. If Z is on a (1, 0)-line then by a similar reasoning as above, one sees that
X1, has degree b and dimension b+ 1, hence it separates Z, and so does Y. Now let Z be
not contained on any (1,0)-line. Assume first that Z = Z..q = {P, @}. We study the
locus C; of curves C of type (a, b) such that |0c(a,—1)| does not separate some Z C C
of this type. Given a curve C' € Cy, we fix the (0,1)-lines L,..., Ly, in a general
position with respect to C, with equations v — o;v" = 0. Setting F; = IL (v — a;0’),
we see that C is associated to a form F' of bi-degree (a,b), which can be written as
F =G F|+- -+ Gpi1Fp41, with G; forms of bi-degree (a,0) uniquely determined by
F. Moreover X has basis G1F1,...,Gpr1Fp41 since all these forms belong to X' and
are linearly independent. Let us assume for the moment that the two (1,0)-lines L,
and Lo passing through P and @ have equations u = 0 and v’ = 0, respectively. We
also denote I' = L; + Lo, and observe that X = Yp = 3 = Y. by restriction since
no non-zero form in Y is divisible by L, or L,.
We consider the split exact sequence of structural sheaves

0— 0, — Or — 0O, —0,
which induces a canonical isomorphism of vector spaces
H°0r(a,b) = HOp, (a,b) ® H 0L, (a,b).

Writing each G; as G; = u®ho; + u® "u'hi; + - - - u'®hg;, we see that

Xp = ((uhor + wha1) F1, ... (uhopi1 + uhapi1) Fota)
ZL:[ == <ulaha1F1,...,u/ahab+1Fb+1>
ZL2 = <uah01F1a s auah0b+1Fb+1> .

Setting o, = (u®ho; + w'%hgei)F;, i = 1,...,b + 1 we see that the evaluation map
Yr — Oy is defined by o; — (heiFi(P), hoiFi(Q)). X does not separate Z if and only
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if the image of this map has dimension 1, that is the rank of the matrix
(halFl(P) . hab+1Fb+1(P)>
ho1 Fi(Q) .. hopt1Fp41(Q)

is equal to 1. Moreover the condition Z C C is equivalent to hq Fi(P) + --- +
hav41Fyr1(P) = 0, or equivalently ho1F1(Q) + -+ + hopr1Fp11(Q) = 0. Calling
H(@0) — (hji), 5 = 0,...a, i = 1,...,b+ 1, the matrix whose columns give the
coefficients of G;, t = 1,...,b+ 1, we can compute the number of parameters on which
this matrix depends. The first row hg1,...,hop+1 depends on b + 1 affine parame-
ters. Fixing such a row, ) varies in a O-dimensional set. The last row hg1, ..., hgpt1
is assigned by the first row and two extra parameters: the point P and a propor-
tionality factor. The other rows add (a — 1)(b + 1) more parameters to the dimen-
sional count. Finally, letting L; and Lo vary adds two more parameters. We find
dimC; <b+1+2+(a—1)(b+1)+2=a(b+1)+4 and hence codimC; > b — 3.

Now we assume Z non-reduced of length 2. We will estimate the dimension of the
locus Cs of the curves containing such a Z not separated by X. The sub-scheme Z is
contained in I" = 2L, a double line of type (2,0) in Q. We assume that L = (u'), for
the moment. One has the exact sequence

0— Op(—1,0)% 0p — 0, — 0,

which induces a non-canonical isomorphism H°0r(a,b) = H°Or(a,b)®H 01 (a—1,b).
More precisely, the following is a basis on H*Or(a,b):

/1, a—1 1, a—1 a a
wutT R, u T Py, R u Fg,

where the first b+ 1 vectors come from H0(a —1,b) and the remaining b+ 1 restrict
to a basis of H0(a,b). In the present case, and in the notation introduced above,
Yr has basis u%hoiF; + v'v* 'hi;F;, i =1,...,b+ 1. Now we use the hypothesis that
the evaluation map X — Oy is not surjective. Let the support of Z be a point
P € L. Then the image of X — Oy is generated by ho; F;(P) + au’'hy;F;(P) € Oz =
Op @ u'Op, for a given o # 0, since Z ¢ L. Since F;(P) # 0 by a general choice of
the L, we find the condition that the two rows (hot,...,hopt1) and (hi1,..., h1pt1)
of the matrix H(®% defined above must be proportional. To this we add the condition
that P € C, which is equivalent to ho1 F1(P) + -+ + hgpt1Fpr1(P) = 0. The count of
affine parameters for H(®9 gives: b+ 1 parameters for the first row, 1 extra parameter
for fixing also the second row, (a — 1)(b + 1) parameters for the remaining rows, plus
1 parameter for letting the line L vary arbitrarily. We find dimCe < a(b+ 1) + 2, and
hence its codimension in H°0g(a,b) is > b — 1. O

Corollary 7.2

Let C be a smooth projective curve with two independent pencils g} and gg. Then
for any r > a the linear system | — gl + rg}| is very ample.

Proof. This is an immediate consequence of the first part of the statement of the
preceding theorem and Lemma 2.2. O

Note that deg | — gl +7g}| = rb— a and this number can be small with respect to
2¢(C) for many r > a, provided that C has a sufficiently small singular locus. So the
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statement above is not a trivial consequence of the general very-ampleness criterion
for curves.

Remark 7.3 Since imposing to a curve of type (a, b) to have one ordinary node amounts
to imposing just one condition, we get from Theorem 7.1 the result that the general
curve C of type (a,b) with at most b — 4 nodes can be embedded into some projective
space by |Oc(a,—1)|.

Remark 7.4 For £ = Oc(r,—1) and C a general curve of type (a,b) > (2,2) on Q, we
know that h!.Z = 0, and one expects Cliff C = min(a, b) — 2, so, by Green-Lazarsfeld’s
criterion, we expect .Z to be normally generated if rb—a > 2ab—2a—2b+5—min(a, b).
Certainly, if deg.Z > 2gc +1 then it is a classical result that . is normally generated.
For example if r > 2a then Oc(r,—1) is always normally generated.

On the other hand we can give examples of very ample line bundles O¢c(r,—1)
which are not normally generated.

EXAMPLE 7.5 Let C C Q be a hyperelliptic curve of genus g > 3, of type (2,9 + 1).
The linear system |0¢(2,—1)| is very ample and has degree 2¢g. Its embedding C' — P9
cannot be ACM by [8, Theorem 4.1 or Corollary 3.4.] This means that the analogue
of 3) in Theorem 4.1 does not hold in general.

EXAMPLE 7.6 Let C C Q be an (a,b)-curve, a,b > 2, and let ¢’ — P¥ be its
image in the embedding given by |O¢(r,—1)| with » > a. Setting r = a + y and
&L = |0c(r,—1)| we have h°.% = b(y + 1) = N + 1. From the structural sequence
of C" in PV we see that in some cases the map H'Opn(2) — H°Oc:(2) cannot be
surjective because h0p~ (2) < h00c(2). We have:

0— H'2% - H'0g(2r —a,—2—b) — H'0g(2r,-2) — H'.Z* — ...
hence

oo (2) =h°L* > (2r —a+1)(b+1) — (2r +1) =ab+2by —a +b.
Now, h?0pn (2) < h°O ¢ (2) when

Ay +1)% —b(y + 1) — 2by
2(b—1)

In the case r = a we find that if a > b/2, then |O¢(a,—1)| is not normally generated.

Indeed we can prove the following general result, in the case r = a.

Theorem 7.7

Let C' be any curve of type (a,b) in Q with b > 4 and such that |Oc(a,—1)| is
very ample. Then O¢(a,—1) is not normally generated.
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Proof. By the result in Example 7.6, we are left with the case b > 2a > 4. By
semi-continuity of h'.#-(2), it is sufficient to show that for C' general of type (a,b)
one has h'.7/(2) # 0. Let ¢ : C — P! be the embedding given by |0c(a, —1)|.
Since C' admits the pencil of divisors gl given as the restriction to C of |0g(0,1)],
by [2, Theorem 2, p. 4], we know that C’ = ¢(C) is contained in the rational normal
scroll S = J(¢(C.L")), with L’ varying among the (0, 1)-lines of Q. The scroll S is the
image in P*~! of a projectivized vector bundle S = P(F) 5 P!, with F = 0p1(81) @
-+ @ Op1(B;), by the map associated to the complete linear system [&5(1)| such that
m.05(1) = F. Onehas 3; > Oforany i = 1,...,t, and t < a, since dim(¢(C.L')) < a—1.
The reader can find useful references for this discussion in [2] pages 5-8. We show that
indeed t = a, equivalently that dim(¢(C.L')) = a — 1. This is equivalent to show
that h'0¢(a,—1) ® Oc(—C.L') = h°0c(a, —1) — a. Since Oc(a,—1) @ Oc(—C.L') =
Oc(a,—2) and deg Oc(a,—2) + 1 — go = b — a > 0, by Proposition 8.2, proved in the
next section with independent arguments, we know that ¢ (a, —2) is non-special and
the result follows.
We now evaluate h°.9/(2) > h0.75(2) > (°3') — R0 (2). We have h00s(1) =
hO(F) = deg F 4+ a = b and

Wos(2) = h°SymPF = (a+1)deg F + a(a+1)/2 = (a+1)(b— a) + ala + 1)/2.

Then we find that the rank of the restriction map p : H2Ops-1(2) — H°Oc(2) is at
most h%Cs(2) = (a+1)b—a(a+1)/2. We also know that h°0c:(2) = h°Oc(2a, —2) =
ab—a+b=(a+1)b—a, and since —a(a+1)/2 < —a for a > 2, we get that p cannot
be surjective. O

8. The linear systems |0 (r, —s)| with s > 2. Open problems

The study of |Oq(r,—s)|, with 7 > a,s > 1 presents some extra difficulties and is
still incomplete, even for a general curve of given numerical type. The geometrical
representation of the linear system |0 (r, —s)| provided by Lemma 6.1 is available
only if O (r, —s) is non-special. The non-speciality of O (r, —s) for C general of type
(a,b) is a consequence of the following conjecture. Let us recall the exact sequence,
for r > a and s > O:

0— HOq(r,—5) — HlﬁQ(r—a, —s—b) "8 HlﬁQ(r, —s) = H'O(r,—s) — 0 (8.1)
with the map pup defined as the product with F', a form representing C'.

Conjecture 8.1 For a general curve C C Q of type (a,b) > (1,1) the map pp has
maximal rank.

A simple computation shows that, if r > a and s > 2 then
hlﬁQ(r —a,—s—0b) — hlﬁQ(r, —s) =deg Oc(r,—s) + 1 — p.(C),

hence the conjecture implies in particular that if deg Oc(r,—s) + 1 — pa(C) > 0, then
it follows h! @ (r,—s) = 0, and so also that h°0(r, —s) = deg Oc(r, —s) + 1 — p,(C).
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It is possible to determine the matrix 7' associated to the map pp, with respect
to suitable bases (see the proof of Theorem 5.1 Chapter III of [7]). In the vector space
HlﬁQ(r —a,—s—b) = Hoﬁpl(r —a)® Hlﬁpl(—s — b) we choose the basis

(ur—a7 ur—a—lu/7 . ulr—a) ® (1/08—1—6—11}/, 1/’[)s+b_21}/2, e 1/,les+b—1)'

Similarly in the vector space HlﬁQ(r, —s) ¥ Hoﬁpl(r) ® Hlﬁpl(—s) we choose the
basis
(" u" LT @ (Lot 102 o).

Let H°, H' ... H® be the rows of the matrix H € k%*1+1 such that F = uw®H tvb
be the bi-graded polynomial defining the curve C. Then T is the Toeplitz block matrix
with r + 1 block rows and r — a + 1 block columns

K, Q ...
Kl KO “ .. Q
... .. ... KO

T=\| ... ... ... € krD(s=1) (rmat+1)(s+b-1)
Ka Ka—l
Q K,
Q Q K

where Q0 € k*71+=1 i5 the zero matrix and each block K; is a Toeplitz matrix
depending on the i-th row H' = (h;y, hyy, ..., hy) of H:

hiy hy ... hy 0O 0
KZ — 0 h’LO oo hlb—l th O E k5_175+b_1 i = 07 ’a
0 0 hiO h'Ll h'Lb

Conjecture 8.1 is of course equivalent to claim that the matrix 7" has maximal rank if
C is general. In this perspective the following special case of Conjecture 8.1 is known.

Proposition 8.2

Conjecture 8.1 is true for s =2, r > a, and for r = a, s > 2.

Proof. In case s = 2 each block of the matrix T is just a row of H, K, = H'
(¢=0,...,a) and the rank of such Toeplitz matrices has been determined in [4]. The
conclusion is that 7" has maximal rank if and only if the vector space R C k%! of
relations among the rows of H does not contain any element of type («, 5)* and does
not contain any Hankel ¢-plane. This happens for the general matrix H of the form
above.

As to the second part, let C’ be the curve of type (b, a) obtained from C' by the
automorphism of Q which exchanges the two rulings. By Serre duality on C we see
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that the sequence (8.1), for r = a and s > 2, becomes (set s — 2 = s')
0— HOp (s +b,-2) — H' Oy(s', —~a—2) "5 H'Oy(s' +b,-2)
— Hlﬁcl(sl =+ b, —2) — 0

hence the result follows from the first case. O

References

1. E. Arbarello, M. Cornalba, P.A. Griffiths, and J. Harris, Geometry of Algebraic Curves I, Springer-
Verlag, New York, 1985.

2. D. Eisenbud and J. Harris, On varieties of minimal degree (a centennial account), Proc. Sympos.
Pure Math. 46 (1987), 3—13.

3. S. Giuffrida and R. Maggioni, Curves on a smooth quadric, Collect. Math. 54 (2003), 309-325.
4. S. Giuffrida and R. Maggioni, Hankel planes, J. Pure Appl. Algebra 209 (2007), 119-138.

5. S. Giuffrida, R. Maggioni, and A. Ragusa, On the postulation of 0-dimensional subschemes on a
smooth quadric, Pacific J. Math. 155 (1992), 251-282.

6. M. Green and R. Lazarsfeld, On the projective normality of complete linear series on an algebraic
curve, Invent. Math. 83 (1985), 73-90.

7. R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York-Heidelberg, 1977.

8. H. Lange and G. Martens, Normal generation and presentation of line bundles of low degree on
curves, J. Reine Angew. Math. 356 (1985), 1-18.

9. G. Martens and F.-O. Schreyer, Line bundles and syzygies of trigonal curves, Abh. Math. Sem.
Univ. Hamburg 56 (1986), 169-189.





