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Javier Soria

Scientific Committee
Luis A. Caffarelli

Ciro Ciliberto

Simon K. Donaldson

Yves Félix

Gerhard Frey

Ronald L. Graham

Craig Huneke

Nigel J. Kalton

Rafael de la Llave

Paul Malliavin

David Nualart

Kristian Seip

Bernd Sturmfels

Christoph Thiele

Manuel Valdivia

Frank Wagner

Guido Weiss

Enrique Zuazua

Volume LVIII
Issue 3(2007)



Editors
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Abstract

Let C be a smooth integral projective curve admitting two pencils g1a and g
1
b

such that g1a + g
1
b is birational. We give conditions in order that the complete

linear system |sg1a + rg1b | be normally generated or very ample.

1. Introduction

Given a smooth projective curve C, the most natural embeddings of C in projective
spaces are the projectively normal ones, i.e. those such that the restriction maps
H0OP

n(m) → H0OC(m) are surjective for all m ≥ 0. It is a natural problem to
construct such embeddings with P

n of smallest possible dimension. If L is a very
ample line bundle on C such that the linear system |L | provides a projectively normal
embedding one says that L (or the linear system |L |) is normally generated. A
famous theorem of M. Noether says that, for non-hyperelliptic curves, the canonical
line bundle is normally generated. A well-known general criterion for the normal
generation of a line bundle is Theorem 1 of [6] where it is proven that if L is very
ample and degL ≥ 2g+1− 2h1L −Cliff C then L is normally generated. Moreover
in Theorem 3 of [6] a necessary and sufficient condition for the normal generation
of a line bundle L is given, provided that degL is greater or equal approximately
3g/2. If one looks for normally generated (possibly special) line bundles of smaller
degrees, one is forced to consider particular line bundles, whose existence depends on
geometrical properties of the curve C. The most basic geometrical property of a curve

Keywords: Algebraic curves, line bundles, projective normality, normal generation.
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240 S. Giuffrida, R. Maggioni, and R. Re

is the existence of pencils of divisors g1a on C. In this paper we deal with curves C
on which there exist two independent pencils g1a and g

1
b . By independent pencils we

mean that g1a + g
1
b , i.e. the smallest linear system containing the sums D + E with

D ∈ g1a and E ∈ g1b , defines a map to P
3 birational on the image. This image will be an

integral curve in a smooth quadric Q ⊂ P
3 of class (a, b) ∈ PicQ = Z⊕ Z. In this case

one can produce projectively normal embeddings of C by some of the complete linear
systems |sg1a+ rg1b |, i.e. the complete linear systems associated to a divisor of the form
sD+ rE with D ∈ g1a and E ∈ g1b , often in degrees not satisfying Green and Lazarsfeld
conditions above. The main object of this paper is to give conditions for r, s ∈ Z such
that the linear systems |sg1a+ rg1b | are very ample and normally generated. We reduce
the problem to studying the linear systems |OC(r, s)| on curves on P

1×P
1, by means of

the birational embedding above. For (r, s) ≥ (0, 0) we are able to completely classify
which |OC(r, s)| are very ample and normally generated. We also make a complete
study of the very ampleness of |OC(r,−1)| with r > 0 and we give many examples of
curves C ⊂ Q such that OC(r,−1) is not normally generated.

The computation of the dimension of the linear systems |OC(r,−s)| for r ≥ a,
s ≥ 2 is the object of a conjecture on the multiplication structure of the deficiency
module ofQ (see 8.1). More precisely, we conjecture that such line bundles have natural
cohomology if C is general and we prove it in the extremal cases (Proposition 8.2).

In Section 5 we apply our results to produce projectively normal embeddings of
general trigonal curves into projective spaces P

n with n ≈ g/3.

2. Preliminaries

In this paper by curve we mean a 1-dimensional locally Cohen-Macaulay projective
scheme defined over an algebraically closed field k. First of all we state a very ampleness
criterion for linear systems on a reduced curve.

Let L be a line bundle on a curve C and let Σ ⊆ H0L be a vector sub-space of
global sections. Let Z ⊂ C be any zero-dimensional sub-scheme. Once an isomorphism
L ⊗ OZ

∼= OZ is fixed, we will call the restriction map Σ ⊗ OC → L ⊗ OZ
∼= OZ the

evaluation map. When it is onto, we will say that Σ separates Z.

Lemma 2.1

Let C be any reduced curve and let |Σ| ⊂ |H0L | be any linear system on C.
Then |Σ| embeds C as a closed sub-scheme of some projective space if and only if Σ
separates Z for any length 2 zero-dimensional sub-scheme Z ⊂ C.

We omit the easy proof of this lemma.
A line bundle L on a curve C, or its associated linear system |L |, is said to be

normally generated ifL is very ample and the curve C ′ ⊂ P(H0L ) = P
n, image of C by

a map associated to the complete linear system |L |, is arithmetically Cohen-Macaulay
(ACM for short). This means that for any m ≥ 1 the multiplication map H0L ⊗
H0Lm → H0Lm+1 is surjective or, equivalently, that H1∗IC′ = ⊕n≥0H1IC′(n) = 0,
with IC′ the ideal sheaf of C

′. When C ′ is smooth the ACM property coincides with
projective normality.
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We recall that if H1L = 0 and L is very ample, then L is normally generated
if H0L ⊗ H0L → H0L 2 is surjective; this is a consequence of the base point free
pencil trick (see for example [1, Chapter III, Section 3]).

Now we will consider birational morphisms η : C → C between integral curves.
By means of the following lemma, one is able to transfer the property of very ampleness
and normal generation of non-special line bundles on C to their pull-backs on C.

Lemma 2.2

Let C be an integral projective curve and let η : C → C be a birational morphism.
Let L be a line bundle on C with H1L = 0. If L is very ample on C then η∗L is
very ample on C and if L is normally generated on C then η∗L is normally generated
on C.

Proof. Let us consider the exact sequence of sheaves 0→ OC → η∗OC → N → 0, with
N a sheaf supported on the singular locus of C. If l = length(N ), then l = pa(C)−
pa(C). Moreover, from the exact sequence above we get 0→ L → η∗η∗L → N → 0,
hence, by the hypothesis that H1L = 0, we get H1(η∗L ) = 0 and the exact sequence

0→ H0L → H0(η∗L )→ H0N → 0.

In particular h0(η∗L ) = h0L + l and we set P
r = P(H0L ), P

r+l = P(H0(η∗L )).
Since |L | is very ample on C it induces an embedding ψ : C → P

r, and |η∗L | is base-
point free because |L | ⊂ |η∗L | is. So we get a map ψ̃ : C → P

r+l and a projection
π : Pr+l → P

r, with vertex P(H0N ), such that π ◦ ψ̃ = ψ ◦ η. Denoting C̃ = Im ψ̃, we
get that η decomposes as C → C̃ → C, and from the exact sequence

0→ H0OC(1)→ H0O
C̃
(1)→ H0N → 0,

it easily follows that pa(C)−pa(C̃) = l, hence pa(C̃) = pa(C). It follows that ψ̃ : C → C̃
is an isomorphism, i.e. |η∗L | is very ample.

Now assume L normally generated on C. Since we know that H1(η∗L ) = 0
and η∗L very ample, to show that η∗L is normally generated it is sufficient to show
that the multiplication map Sym2H0(η∗L )→ H0(η∗L 2) is onto. Consider the exact
sequence

0→ M → H0L ⊗L → L 2 → 0,

with the last map given by evaluation of sections and M its kernel, which is a rank r
vector bundle on C. From the assumptions on L one sees that H1M = 0. Moreover
we can consider an analogous exact sequence 0 → M ′ → H0L ⊗ η∗L → η∗L 2 → 0,
because H0L , as a subspace of H0(η∗L ), generates η∗L since it has no base points.
From the exact sequences

0→ L → η∗η∗L → N → 0 and 0→ L 2 → η∗η∗L 2 → N → 0,

we deduce a commutative diagram:
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0 0 0

0 H0M H0L ⊗H0L H0L 2 0

0 H0M ′ H0L ⊗H0η∗L H0η∗L 2 H1M ′

0 H0Q′ H0L ⊗H0N H0N H1Q′

0 0 0

Here Q′ is defined as the cokernel of the inclusionM → η∗M ′, and it has 0-dimensional
support sinceM and η∗M ′ have the same rank. The exactness of the third column is
consequence of the fact that H1L 2 = 0. The exactness of the first column is provided
by the fact that H1M = 0; moreover we know that H1Q′ = 0, hence also H1M ′ = 0.
The result then follows by looking at the second row. �

3. The deficiency module

Let Q = P
1 × P

1. We introduce the bigraded ring S =
⊕

a,b∈NH
0OQ(a, b) =

⊕
Sa,b

and the bi-graded S-module

MQ =
⊕

m,n∈Z

H1OQ(m,n) =
⊕

m,n∈Z

MQ,m,n.

We collect all the information we need about MQ in the following theorem, a simple
consequence of Künneth decomposition formulas.

Theorem 3.1

The vector space structure of MQ is given by

MQ,m,n =

⎧⎨⎩ H0O
P

1(m)⊗H1O
P

1(n) for m ≥ 0, n ≤ −2
H1O

P
1(m)⊗H0O

P
1(n) for m ≤ −2, n ≥ 0 .

Moreover the multiplication maps

μ :MQ,m,n ⊗ Sa,b → MQ,m+a,n+b

are surjective.
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For curves on the quadric Q we refer to [3] for notation, properties and further
references. If C ⊂ Q is a curve of type (a, b) ≥ (1, 1) we call deficiency module of C
the bigraded S-module DC = MQ(−a,−b). Note that DC does not vanish only when
m ≥ a and n ≤ b − 2, or when m ≤ a − 2 and n ≥ b. In the picture below the set
of couples (r, s) where DC does not vanish is the union of the two rectangles R1, R2.
We also illustrate the various possibilities for the half-lines l = {(ρr, ρs) : ρ ∈ N} to
intersect the rectangles R1,R2.

R1

l′′

l

l′

l′

R2

(a− 2, b)

m

n

(a, b− 2)

4. Study of |sg1a + rg1b | with (r, s) ≥ (1, 1)

We start with the case of an integral curve C ⊂ Q of type (a, b).

Theorem 4.1

Let C ⊂ Q be a curve of type (a, b), let (r, s) ≥ (1, 1) . Then
1) if no multiple of (r, s) belongs to R1 ∪R2 then OC(r, s) is normally generated;

2) if (r, s) /∈ R1 ∪ R2 but ρ(r, s) ∈ R1 ∪ R2 for some ρ > 1 then OC(r, s) is not
normally generated;

3) if (r, s) ∈ R1 ∪R2, then OC(r, s) is normally generated.

Proof. First we observe that |OQ(r, s)| always embeds Q as a projectively normal
surface. This is an easy consequence of the fact that the projective coordinate ring
RQ =

⊕
ρH

0OQ(ρr, ρs) is generated in degree ρ = 1. In case 1), denoting IC the
ideal sheaf of C in Q, one has H1IC(ρr, ρs) = 0 for any ρ ≥ 1, hence the restriction



244 S. Giuffrida, R. Maggioni, and R. Re

H0OQ(ρr, ρs) → H0OC(ρr, ρs) is surjective. So the ring RC =
⊕

ρH
0OC(ρr, ρs) is

generated in ρ = 1 and the curve C is embedded by |OC(r, s)| as an ACM curve.
In case 2) we have that the restriction map RQ → RC is not surjective in those

degrees ρ such that (ρr, ρs) ∈ R1 ∪ R2 but it is surjective at ρ = 1. Hence RC cannot
be generated at ρ = 1, so the embedding is not ACM.

Suppose now that (r, s) ∈ R1 ∪ R2, so that H
1IC(r, s) �= 0. From the struc-

tural sequence of C, twisting by (r, s) and taking cohomology, we find H0IC(r, s) =
H1OC(r, s) = 0 and the exact sequence

0→ H0OQ(r, s)→ H0OC(r, s)→ H1IC(r, s)→ 0,

hence H0OC(r, s) ∼= H0OQ(r, s) ⊕ H1IC(r, s) as vector space, with dimension
h0OC(r, s) = d + 1 − g. Again, the sheaf OC(r, s) is very ample and gives an em-
bedding C ↪→ P

N with N = d− g. Let IC′ ⊂ O
PN be the ideal sheaf of C ′.

To prove that γ : H0OC′(1)⊗H0O
PN (n−1)→ H0OC′(n) is surjective it is enough

to prove that γ′ : H0OC(r, s) ⊗ H0OQ((n − 1)r, (n − 1)s) → H0OC(nr, ns) is. Since
H0OC(r, s) ∼= H0OQ(r, s)⊕H1IC(r, s), this map is the direct sum γ

′ = γ′0 ⊕ γ′1, with
γ′0 : H

0OQ(r, s)⊗H0OQ((n− 1)r, (n− 1)s)→ H0OQ(nr, ns)

and
γ′1 : H

1IC(r, s)⊗H0OQ((n− 1)r, (n− 1)s)→ H1IC(nr, ns)

which are both surjective: for γ′0 see [5, Lemma 2.3]; for γ′1 see Theorem 3.1. �

From the theorem above and using Lemma 2.2 we deduce the following result in
the abstract curves setting.

Theorem 4.2

Let C be a smooth projective curve admitting two independent pencils of divisors
g1a and g1b . Let r, s be two positive integers. Then |sg1a + rg1b | is normally generated
if either (r, s) �≤ (a − 2, b − 2) and no multiple of (r, s) belongs to R1 ∪ R2 or if
(r, s) ∈ R1 ∪R2.

Remark 4.3 The result of Theorem 4.2 in some cases gives normally generated line
bundles beyond Green and Lazarsfeld criterion. Consider a birational map η : C →
C ⊂ Q with C of type (a, b). Then pa(C) = (a − 1)(b − 1), the geometric genus
g(C) = pa(C)− l for some integer l ≥ 0 and Cliff C ≤ min(a, b)− 2. If we take a ≤ b,
then Cliff C ≤ a − 2 and 2g(C) + 1 − Cliff C ≥ 2ab − 3a − 2b + 5 − 2l. Choosing for
example r = (a− 1)/2, s = b− 1, one sees that the half line (ρr, ρs) does not intersect
R1 ∪ R2, hence H1OC(r, s) = 0. So one can apply Theorem 4.1 and Lemma 2.2
to produce the line bundle L = η∗OC(r, s) on C such that H

1(L ) = 0, moreover
degL < 2ab− 3a− 2b+5− 2l when ab > 4a+3b− 10+4l. This can happen of course
for many choices of a, b if one assumes l sufficiently small, i.e. when the two pencils g1a
and g1b produce a curve C with a small singular locus.

In the particular case that C itself is smooth we do not need to apply Lemma 2.2,
so we do not need to impose H1OC(r, s) = 0. This enables one to consider also values
of (r, s) < (a − 2, b − 2) such that the half line (ρr, ρs) does not intersect R1 ∪ R2,
providing ACM embeddings C ⊂ P

n with n small compared to pa(C).
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5. Example: general trigonal curves

As an application of the preceding results, we now produce some interesting projec-
tively normal embeddings of general trigonal curves of genus g ≥ 5. These embeddings
cannot be achieved by the methods of [6], because we will use linear systems |L | with
high speciality h1L .

Notation. We adopt the notation �t� for the maximum integer less or equal to t. A
trigonal curve is a curve C admitting a g13. The canonical model C ⊂ P

g−1 is contained
in a rational normal scroll S, isomorphic to a Hirzebruch surface P(O

P
1 ⊕ O

P
1(e)),

e ≥ 0, generated by the lines 〈D〉 for any D ∈ g13. The Maroni invariant m of C can
be defined as the degree in P

g−1 of a curve C0 of S such that C2
0 = −e, unique in the

case e > 0. We refer to [9] for a modern account of Maroni’s theory of line bundles
on trigonal curves. If C is general one knows that m is maximal, more precisely
m = �(g(C)− 2)/2�, see [9, Corollary 5, p. 177]. We will denote by T the line bundle
on C associated to a g13 and by KC the canonical line bundle.

Proposition 5.1

A general trigonal curve of even genus g ≥ 6 can be embedded as a projectively
normal curve in P

n, with n = 2�(g − 2)/6� + 3 and degree d = g + 3 − s/2, with
s = g − 2− 6�(g − 2)/6�.

Proof. Let C be a general trigonal curve with g = g(C) ≥ 6 even, so that m = g/2−1.
From [9, Corollary 1, p. 175], one knows that there exists a line bundle M on C of
degree b = g−m = g/2+1 with h0M = 2, base point free and not composed with T .
Using the two pencils |T | = g13 and |M | = g1b one easily sees that C can be embedded
in P

1 × P
1 as a smooth curve of type (3, g/2 + 1). So we can use line bundles of

the form OC(r, s) = T s ⊗ M r and Theorem 4.1 to find projectively normal models
of C in some projective space P

n. The smallest value of n one can achieve with this
method can be obtained by taking (r, s) = (1, t) with t > (b − 2)/3, so that the half-
line (ρr, ρs) does not intersect R1 ∪R2. More precisely, we take the minimum possible
such t, that is t = �(g − 2)/6� + 1. Since H0OC(1, t) = 2(t + 1), we find the desired
result. The value of d is obtained by a straightforward computation, using the formula
d = degOC(1, t) = g/2 + 1 + 3t. �

For completeness, we state without proof a similar result for g odd. This case is more
subtle, since C will only admit a birational model C ⊂ Q with one node. One can
get some good projectively normal embedding of C by a suitable linear system of the
form |Ix0,C(1, t)| with Ix0,C the ideal sheaf of the node x0 ∈ C. We omit the details,
hoping to come back to similar techniques in the future, in greater generality and with
more applications.

Proposition 5.2

A general trigonal curve of odd genus g ≥ 5 can be embedded as a projectively
normal curve in P

n with n = 2�(g − 1)/6� + 2 and degree d = g + 2 − s/2, with
s = g − 1− 6�(g − 1)/6�.
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Question: Do the values of n in Proposition 5.1 and 5.2 give the minimum possible
dimension of a projective space in which a general trigonal curve of genus g ≥ 5 can
be embedded as a projectively normal curve?

6. Study of |rg1b |

Let C ⊂ Q be an integral curve of type (a, b). For every couple (r,−s), r ≥ a, s ≥ 0,
the linear system |OC(r,−s)| has degree d = br − as and dimension ≥ d − g, where
g = (a− 1)(b− 1) is the arithmetic genus of C. In order to realize H0OC(r,−s) using
bi-homogeneous forms on Q, we prove a technical lemma which will be useful also in
the next sections.

Lemma 6.1

Let C ⊂ Q be an integral curve of type (a, b), let y ≥ b−1 and Y = C. (∑y+s
i=1 L

′
i),

where L′i are y + s general (0, 1)-lines. Then, for any r ≥ a, s ≥ 0 such that
h0OC(r,−s) = d + 1 − g ≥ 0, the linear system |OC(r,−s)| is equal to the set
of divisors on C of the form D.C − Y with D belonging to the linear sub-system
|IY (r, y)| ⊂ |OQ(r, y)| of the divisors of bi-degree (r, y) passing through Y. Moreover
|IY (r, y)| has no base points out of the scheme Y .

Proof. The first assertion follows by the assumption on the dimension of the series. Set
Σ = H0IY (r, y). It also follows that Y imposes independent conditions to H0OC(r, y).
From this it is not difficult to see that the restriction ΣΓ of Σ to any (1, 1)-curve Γ
has degree r + y − n, where n is the degree of the sub-scheme Γ. Y , and dimension
r + y + 1− n, so that Σ has no base points out of Y , including base points infinitely
near to a point of Y . �

In a similar way one can prove thatH0OC(−r, s) is cut by the curves ofH0OQ(x, s)
passing through X = C. (

∑x+r
i=1 Li), where Li are x+ r general (1, 0)-lines.

Now we study the linear system |OC(r, 0)|: we have
0→ H0OQ(r, 0)→ H0OC(r, 0)→ H1IC(r, 0)→ 0,

from which we see that if r < a then H1IC(r, 0) ∼= H1OQ(r − a,−b) = 0 so that
H0OC(r, 0) ∼= H0OQ(r, 0) does not define a very ample linear system; for r ≥ a we get

h0OC(r, 0) = h
0OQ(r, 0) + h

1IC(r, 0) = r + 1 + (r − a+ 1)(b− 1) = d+ 1− g
where d = rb is the degree of the divisor associated to this sheaf, g = (a− 1)(b− 1) is
the arithmetic genus of C.

Theorem 6.2

Let C ⊂ Q be an integral curve of type (a, b). Then the linear system |OC(r, 0)|
is very ample for any r ≥ a.

Proof. By the previous lemma, taking y ≥ b− 1, the linear system |OC(r, 0)| is cut on
C by the forms in Σ = H0IY (r, y), with Y = C. (L′1+· · ·+L′y) for y general (0, 1)-lines
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L′i. In view of Lemma 2.1, let Z ⊂ C be a length 2 zero dimensional sub-scheme. We
can assume that Z does not intersect any of the lines L′i, since these can be chosen in
a general way.

Consider any (1, 1)-curve Γ containing Z. The argument used at the end of the
proof of Lemma 6.1 shows that the restriction ΣΓ separates the points of Γ out of the
scheme Y . So the evaluation map Σ → OZ is onto. �

Theorem 6.3

For any r ≥ a the line bundle OC(r, 0) is normally generated.

Proof. Denoting by IC′ ⊂ O
PN the ideal sheaf of C ′ as a subscheme of PN , N = d−g,

to show that H1IC′(n) = 0 for any n we repeat the same argument used for OC(r, s)
with (r, s) ≥ (1, 1), case 3) of Theorem 4.1. �

Theorem 6.4

Let C be a smooth projective curve admitting two independent pencils of divisors
g1a and g1b . Then, for any r ≥ a the linear system |rg1b | is normally generated.

Proof. This is an immediate consequence of the preceding theorem, Lemma 2.1 and
Lemma 2.2, observing that H1OC(r, 0) = 0 for r ≥ a. �

Remark 6.5 It is not difficult to see that the results of Theorem 6.3 and Theorem 6.4
can provide examples of normally generated line bundles beyond Green’s and Lazars-
feld’s sufficient condition.

7. The linear systems |rg1b − g1a|
As in the preceding sections, we start with studying linear systems |OC(r,−1)|, with
r ≥ 0, on integral (a, b)-curves onQ.We will be able to characterize the very-ampleness
of such linear systems. We will also give some counterexamples for the normal gener-
ation property.

From the structural sequence of C ⊂ Q one immediately sees that H0OC(r,−1) ∼=
H1OQ(r−a,−1−b) �= 0 for r ≥ a and b ≥ 1, which will be assumed henceforth. Hence
we know that h0OC(r,−1) = (r + 1 − a)b and H1OC(r,−1) = 0. By Lemma 6.1 we
represent H0OC(r,−1) as the restriction to C of Σ = H0IY (r, b) ⊂ H0OQ(r, b), with
Y = C. (L′1 + · · · + L′b+1), for an arbitrary choice of b + 1 distinct (0, 1)-lines. In
particular we recall that Y imposes independent conditions to H0OQ(r, b) and that Σ
has no base points out of Y . By Lemma 2.1, the very-ampleness of ΣC is proved if
one shows that Σ separates Z, for any length 2 zero-dimensional Z ⊂ C.

Theorem 7.1

Let C ⊂ Q be an integral curve of type (a, b) ≥ (1, 1). Then for any r > a the
linear system |OC(r,−1)| is very ample. If r = a, the set of of curves C of type (a, b)
on which |OC(a,−1)| is not very ample is closed in |OQ(a, b)| and has codimension at
least b− 3. In particular if b ≥ 4 and C is general, then |OC(a,−1)| is very ample.
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Proof. Take any zero-dimensional sub-scheme Z ⊂ C of length 2. We distinguish the
cases r > a or r = a.

Case r > a. Assume Z is contained in a (1, 0) line L, which we may assume not passing
through any point of Y by a general choice of the L′i and by the irreducibility of C.
Then we consider the restriction ΣL of Σ to L, which gives a linear system of degree b
and vector space dimension equal to dimΣ−dimΣ′ with Σ′ the linear sub-space of Σ
of the forms divided by L. We may identify Σ′ with the sub-space of H0OQ(r − 1, b)
of forms vanishing on Y . Since r− 1 ≥ a we have that Σ′C represents H

0OC(r− 1,−1)
and, as a consequence, Y imposes independent conditions to H0OQ(r − 1, b) as well.
So dimΣL = h0OQ(r, b) − h0OQ(r − 1, b) = b + 1 and therefore ΣL is very ample on
L. So Σ separates Z as well.

Now assume Z is not contained in any (1, 0)-line. Take any divisor D of type
(r−1, b) passing through Y , not intersecting Z, which exists since the space of sections
Σ′ ⊂ H0OQ(r−1, b) representing |OC(r−1,−1)| has no base points out of Y . Consider,
for any (1, 0)-line L intersecting Z, the divisor D + L; it is clear that divisors of this
form separate Z, no matter whether it is reduced or not.

Case r = a. If Z is on a (1, 0)-line then by a similar reasoning as above, one sees that
ΣL has degree b and dimension b+1, hence it separates Z, and so does Σ. Now let Z be
not contained on any (1, 0)-line. Assume first that Z = Zred = {P,Q}. We study the
locus C1 of curves C of type (a, b) such that |OC(a,−1)| does not separate some Z ⊂ C
of this type. Given a curve C ∈ C1, we fix the (0, 1)-lines L′1, . . . , L′b+1 in a general
position with respect to C, with equations v − αiv

′ = 0. Setting Fi = Πj �=i(v − αiv
′),

we see that C is associated to a form F of bi-degree (a, b), which can be written as
F = G1F1 + · · ·+Gb+1Fb+1, with Gi forms of bi-degree (a, 0) uniquely determined by
F . Moreover Σ has basis G1F1, . . . , Gb+1Fb+1 since all these forms belong to Σ and
are linearly independent. Let us assume for the moment that the two (1, 0)-lines L1

and L2 passing through P and Q have equations u = 0 and u′ = 0, respectively. We
also denote Γ = L1 + L2, and observe that Σ ∼= ΣΓ

∼= ΣL1
∼= ΣL2 by restriction since

no non-zero form in Σ is divisible by L1 or L2.
We consider the split exact sequence of structural sheaves

0→ OL1 → OΓ → OL2 → 0,

which induces a canonical isomorphism of vector spaces

H0OΓ (a, b) ∼= H0OL1(a, b)⊕H0OL2(a, b).

Writing each Gi as Gi = uah0i + ua−1u′h1i + · · ·u′ahai, we see that

ΣΓ = 〈(uah01 + u′aha1)F1, . . . , (uah0 b+1 + u′aha b+1)Fb+1〉
ΣL1 = 〈u′aha1F1, . . . , u

′aha b+1Fb+1〉
ΣL2 = 〈uah01F1, . . . , u

ah0 b+1Fb+1〉 .

Setting σi = (u
ah0i + u′ahai)Fi, i = 1, . . . , b + 1 we see that the evaluation map

ΣΓ → OZ is defined by σi �→ (haiFi(P ), h0iFi(Q)). Σ does not separate Z if and only
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if the image of this map has dimension 1, that is the rank of the matrix(
ha1F1(P ) . . . ha b+1Fb+1(P )

h01F1(Q) . . . h0 b+1Fb+1(Q)

)
is equal to 1. Moreover the condition Z ⊂ C is equivalent to ha1F1(P ) + · · · +
ha b+1Fb+1(P ) = 0, or equivalently h01F1(Q) + · · · + h0 b+1Fb+1(Q) = 0. Calling
H(a,0) = (hji), j = 0, . . . a, i = 1, . . . , b + 1, the matrix whose columns give the
coefficients of Gi, i = 1, . . . , b+1, we can compute the number of parameters on which
this matrix depends. The first row h01, . . . , h0 b+1 depends on b + 1 affine parame-
ters. Fixing such a row, Q varies in a 0-dimensional set. The last row ha1, . . . , ha b+1

is assigned by the first row and two extra parameters: the point P and a propor-
tionality factor. The other rows add (a − 1)(b + 1) more parameters to the dimen-
sional count. Finally, letting L1 and L2 vary adds two more parameters. We find
dim C1 ≤ b+ 1 + 2 + (a− 1)(b+ 1) + 2 = a(b+ 1) + 4 and hence codim C1 ≥ b− 3.

Now we assume Z non-reduced of length 2. We will estimate the dimension of the
locus C2 of the curves containing such a Z not separated by Σ. The sub-scheme Z is
contained in Γ = 2L, a double line of type (2, 0) in Q. We assume that L = (u′)0 for
the moment. One has the exact sequence

0→ OL(−1, 0) u′→ OΓ → OL → 0,

which induces a non-canonical isomorphismH0OΓ (a, b) ∼= H0OL(a, b)⊕H0OL(a−1, b).
More precisely, the following is a basis on H0OΓ (a, b):

u′ua−1F1, . . . , u′ua−1Fb+1, u
aF1, . . . , u

aFb+1,

where the first b+1 vectors come from H0OL(a−1, b) and the remaining b+1 restrict
to a basis of H0OL(a, b). In the present case, and in the notation introduced above,
ΣΓ has basis uah0iFi + u′ua−1h1iFi, i = 1, . . . , b+ 1. Now we use the hypothesis that
the evaluation map ΣΓ → OZ is not surjective. Let the support of Z be a point
P ∈ L. Then the image of ΣΓ → OZ is generated by h0iFi(P ) + αu′h1iFi(P ) ∈ OZ

∼=
OP ⊕ u′OP , for a given α �= 0, since Z �⊂ L. Since Fi(P ) �= 0 by a general choice of
the L′i, we find the condition that the two rows (h01, . . . , h0 b+1) and (h11, . . . , h1 b+1)
of the matrix H(a,0) defined above must be proportional. To this we add the condition
that P ∈ C, which is equivalent to h01F1(P ) + · · ·+ h0 b+1Fb+1(P ) = 0. The count of
affine parameters for H(a,0) gives: b+1 parameters for the first row, 1 extra parameter
for fixing also the second row, (a− 1)(b+ 1) parameters for the remaining rows, plus
1 parameter for letting the line L vary arbitrarily. We find dim C2 ≤ a(b+ 1) + 2, and
hence its codimension in H0OQ(a, b) is ≥ b− 1. �

Corollary 7.2

Let C be a smooth projective curve with two independent pencils g1a and g1b . Then
for any r > a the linear system | − g1a + rg1b | is very ample.

Proof. This is an immediate consequence of the first part of the statement of the
preceding theorem and Lemma 2.2. �

Note that deg | − g1a+ rg1b | = rb− a and this number can be small with respect to
2g(C) for many r > a, provided that C has a sufficiently small singular locus. So the
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statement above is not a trivial consequence of the general very-ampleness criterion
for curves.

Remark 7.3 Since imposing to a curve of type (a, b) to have one ordinary node amounts
to imposing just one condition, we get from Theorem 7.1 the result that the general
curve C of type (a, b) with at most b− 4 nodes can be embedded into some projective
space by |OC(a,−1)|.

Remark 7.4 For L = OC(r,−1) and C a general curve of type (a, b) ≥ (2, 2) on Q, we
know that h1L = 0, and one expects Cliff C = min(a, b)−2, so, by Green-Lazarsfeld’s
criterion, we expectL to be normally generated if rb−a ≥ 2ab−2a−2b+5−min(a, b).
Certainly, if degL ≥ 2gC+1 then it is a classical result that L is normally generated.
For example if r ≥ 2a then OC(r,−1) is always normally generated.

On the other hand we can give examples of very ample line bundles OC(r,−1)
which are not normally generated.

Example 7.5 Let C ⊂ Q be a hyperelliptic curve of genus g ≥ 3, of type (2, g + 1).
The linear system |OC(2,−1)| is very ample and has degree 2g. Its embedding C ↪→ P

g

cannot be ACM by [8, Theorem 4.1 or Corollary 3.4.] This means that the analogue
of 3) in Theorem 4.1 does not hold in general.

Example 7.6 Let C ⊂ Q be an (a, b)-curve, a, b ≥ 2, and let C ′ ↪→ P
N be its

image in the embedding given by |OC(r,−1)| with r ≥ a. Setting r = a + y and
L = |OC(r,−1)| we have h0L = b(y + 1) = N + 1. From the structural sequence
of C ′ in P

N we see that in some cases the map H0O
P
N (2) −→ H0OC′(2) cannot be

surjective because h0O
P
N (2) < h0OC′(2). We have:

0→ H0L 2 → H1OQ(2r − a,−2− b)→ H1OQ(2r,−2)→ H1L 2 → . . .

hence

h0OC′(2) = h0L 2 ≥ (2r − a+ 1)(b+ 1)− (2r + 1) = ab+ 2by − a+ b.

Now, h0O
P
N (2) < h0OC′(2) when

a >
b2(y + 1)2 − b(y + 1)− 2by

2(b− 1) .

In the case r = a we find that if a > b/2, then |OC(a,−1)| is not normally generated.

Indeed we can prove the following general result, in the case r = a.

Theorem 7.7

Let C be any curve of type (a, b) in Q with b ≥ 4 and such that |OC(a,−1)| is
very ample. Then OC(a,−1) is not normally generated.
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Proof. By the result in Example 7.6, we are left with the case b ≥ 2a ≥ 4. By
semi-continuity of h1IC′(2), it is sufficient to show that for C general of type (a, b)
one has h1IC′(2) �= 0. Let φ : C → P

b−1 be the embedding given by |OC(a,−1)|.
Since C admits the pencil of divisors g1a given as the restriction to C of |OQ(0, 1)|,
by [2, Theorem 2, p. 4], we know that C ′ = φ(C) is contained in the rational normal
scroll S =

⋃〈φ(C.L′)〉, with L′ varying among the (0, 1)-lines of Q. The scroll S is the
image in P

b−1 of a projectivized vector bundle S̃ = P(F ) π→ P
1, with F ∼= OP

1(β1)⊕
· · · ⊕ O

P
1(βt), by the map associated to the complete linear system |OS̃(1)| such that

π∗OS̃(1) = F. One has βi ≥ 0 for any i = 1, . . . , t, and t ≤ a, since dim〈φ(C.L′)〉 ≤ a−1.
The reader can find useful references for this discussion in [2] pages 5-8. We show that
indeed t = a, equivalently that dim〈φ(C.L′)〉 = a − 1. This is equivalent to show
that h0OC(a,−1) ⊗ OC(−C.L′) = h0OC(a,−1) − a. Since OC(a,−1) ⊗ OC(−C.L′) =
OC(a,−2) and degOC(a,−2) + 1− gC = b− a > 0, by Proposition 8.2, proved in the
next section with independent arguments, we know that OC(a,−2) is non-special and
the result follows.

We now evaluate h0IC′(2) ≥ h0IS(2) ≥ (b+1
2

) − h0OS(2). We have h0OS(1) =
h0(F ) = degF + a = b and

h0OS(2) = h0Sym(2)F = (a+ 1) degF + a(a+ 1)/2 = (a+ 1)(b− a) + a(a+ 1)/2.

Then we find that the rank of the restriction map ρ : H0O
P
b−1(2) → H0OC′(2) is at

most h0OS(2) = (a+1)b−a(a+1)/2. We also know that h0OC′(2) = h0OC(2a,−2) =
ab− a+ b = (a+ 1)b− a, and since −a(a+ 1)/2 < −a for a ≥ 2, we get that ρ cannot
be surjective. �

8. The linear systems |OC(r,−s)| with s ≥ 2. Open problems

The study of |OC(r,−s)|, with r ≥ a, s > 1 presents some extra difficulties and is
still incomplete, even for a general curve of given numerical type. The geometrical
representation of the linear system |OC(r,−s)| provided by Lemma 6.1 is available
only if OC(r,−s) is non-special. The non-speciality of OC(r,−s) for C general of type
(a, b) is a consequence of the following conjecture. Let us recall the exact sequence,
for r ≥ a and s ≥ 0:

0→ H0OC(r,−s)→ H1OQ(r−a,−s−b) μF→ H1OQ(r,−s)→ H1OC(r,−s)→ 0 (8.1)

with the map μF defined as the product with F , a form representing C.

Conjecture 8.1 For a general curve C ⊂ Q of type (a, b) ≥ (1, 1) the map μF has
maximal rank.

A simple computation shows that, if r ≥ a and s ≥ 2 then

h1OQ(r − a,−s− b)− h1OQ(r,−s) = degOC(r,−s) + 1− pa(C),

hence the conjecture implies in particular that if degOC(r,−s) + 1− pa(C) ≥ 0, then
it follows h1OC(r,−s) = 0, and so also that h0OC(r,−s) = degOC(r,−s) + 1− pa(C).
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It is possible to determine the matrix T associated to the map μF , with respect
to suitable bases (see the proof of Theorem 5.1 Chapter III of [7]). In the vector space
H1OQ(r − a,−s− b) ∼= H0O

P
1(r − a)⊗H1O

P
1(−s− b) we choose the basis

(ur−a, ur−a−1u′, . . . , u′r−a)⊗ (1/vs+b−1v′, 1/vs+b−2v′2, . . . , 1/vv′s+b−1).

Similarly in the vector space H1OQ(r,−s) ∼= H0O
P

1(r) ⊗ H1O
P

1(−s) we choose the
basis

(ur, ur−1u′, . . . , u′r)⊗ (1/vs−1v′, 1/vs−2v′2, . . . , 1/vv′s−1).

Let H0, H1, . . . ,Ha be the rows of the matrix H ∈ ka+1,b+1 such that F = u aH tv b

be the bi-graded polynomial defining the curve C. Then T is the Toeplitz block matrix
with r + 1 block rows and r − a+ 1 block columns

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K0 Ω . . . Ω
K1 K0 . . . Ω
. . . . . . . . . . . .
. . . . . . . . . K0

. . . . . . . . . . . .
Ka Ka−1 . . . . . .
Ω Ka . . . . . .
. . . . . . . . . . . .
Ω Ω . . . Ka

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ k(r+1)(s−1),(r−a+1)(s+b−1)

where Ω ∈ ks−1,s+b−1 is the zero matrix and each block Ki is a Toeplitz matrix
depending on the i-th row H i = (hi0, hi1, . . . , hib) of H:

Ki =

⎛⎜⎜⎜⎝
hi0 hi1 . . . hib 0 . . . 0
0 hi0 . . . hib−1 hib . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 . . . 0 hi0 hi1 . . . hib

⎞⎟⎟⎟⎠ ∈ ks−1,s+b−1 i = 0, . . . , a

Conjecture 8.1 is of course equivalent to claim that the matrix T has maximal rank if
C is general. In this perspective the following special case of Conjecture 8.1 is known.

Proposition 8.2

Conjecture 8.1 is true for s = 2, r ≥ a, and for r = a, s ≥ 2.
Proof. In case s = 2 each block of the matrix T is just a row of H, Ki = H i

(i = 0, . . . , a) and the rank of such Toeplitz matrices has been determined in [4]. The
conclusion is that T has maximal rank if and only if the vector space R ⊂ ka+1 of
relations among the rows of H does not contain any element of type (α, β)a and does
not contain any Hankel i-plane. This happens for the general matrix H of the form
above.

As to the second part, let C ′ be the curve of type (b, a) obtained from C by the
automorphism of Q which exchanges the two rulings. By Serre duality on C we see
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that the sequence (8.1), for r = a and s ≥ 2, becomes (set s− 2 = s′)

0→ H0OC′(s
′ + b,−2)→ H1OQ(s

′,−a− 2) μF ′→ H1OQ(s
′ + b,−2)

→ H1OC′(s
′ + b,−2)→ 0

hence the result follows from the first case. �
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