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Abstract

We construct a testing-function space, which is equipped with the topology that
is generated by Lν,p - multinorm of the differential operator

Ax = x2 − x
d

dx

[
x

d

dx

]
,

and its k-th iterates Ak
x, where k = 0, 1, . . . , and A0

xϕ = ϕ. Comparing
with other testing-function spaces, we introduce in its dual the Kontorovich-
Lebedev transformation for distributions with respect to a complex index. The
existence, uniqueness, imbedding and inversion properties are investigated. As
an application we find a solution of the Dirichlet problem for a wedge for the
harmonic type equation in terms of the Kontorovich-Lebedev integral.

1. Introduction

Let R+ = (0, +∞), 2 ≤ p < ∞, ν > 0 and consider a class Aν,p of complex-valued,
smooth functions ϕ(x) on R+ for which the following quantity

αk,ν,p(ϕ) = α0,ν,p(Ak
xϕ) =

(∫ ∞

0

∣∣∣Ak
xϕ

∣∣∣p xνp−1dx

)1/p

(1.1)

Keywords: Testing-function spaces, distributions, Kontorovich-Lebedev transform, modified Bessel
functions, Dirichlet problem for a wedge.
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is finite, for each k ∈ N0. Here Ak
x, where k = 0, 1, . . . , is k-th iterate of the differential

operator

Ax = x2 − x
d

dx

[
x

d

dx

]
. (1.2)

As is known, operator (1.2) has an eigenfunction Ks(x), s = µ + iτ , which is the
modified Bessel function or the Macdonald function [2] of a complex index s and
satisfies the property

AxKs(x) = −s2Ks(x). (1.3)

It has the following asymptotic behaviour (cf. [2, 7])

Ks(z) =
(

π

2z

)1/2

e−z[1 + O(1/z)], z → ∞, (1.4)

and near the origin
Ks(z) = O

(
z−|µ|) , z → 0, (1.5)

K0(z) = O(log z), z → 0. (1.6)

The modified Bessel function can be represented for instance, by the integrals [2, 7]

Ks(z) =
∫ ∞

0
e−z cosh u cosh sudu =

1
2

∫ iδ+∞

iδ−∞
e−z cosh u+sudu, (1.7)

where Rez > 0, δ ∈ [
0, π

2

)
. Hence it is not difficult to show that Ks(z) is an even entire

function with respect to s and it is analytic in a right half-plane with respect to z.
Moreover by using (1.7) and relation (2.3.16.1) in [6, Vol. I] we obtain the estimate

|Ks(z)| ≤ e−δ|τ |
(

Rez + Imz tan δ

Rez − Imz tan δ

)µ/2

Kµ

(√
[Rez cos δ]2 − [Imz sin δ]2

)
, (1.8)

in the sector | arg z| < π
2 − δ, δ ∈ [

0, π
2

)
. In particular, putting δ = 0 we get the

elementary inequality |Ks(z)| ≤ Kµ(Rez), Rez > 0, s = µ + iτ .
The classical Kontorovich-Lebedev transform [7] is defined usually for a pure

imaginary index iτ by the integral

Kiτ [f ] =
∫ ∞

0
Kiτ (x)f(x)dx. (1.9)

If f ∈ Lν,p(R+), ν < 1, i.e. (cf. (1.1)) the norm

||f ||ν,p =
(∫ ∞

0
|f(x)|p xνp−1dx

)1/p

< ∞, (1.10)

then it is shown in [7, Chapter 2] that (1.9) exists as a Lebesgue integral and Kiτ [f ]
is bounded from Lν,p(R+) into Lr(R+), where p, r ∈ [1,∞) has no dependence. More-
over (see [7, 8]) its inversion can be written in terms of the singular integral

f(x) =
2
π2

lim
ε→0+

1
x

∫ ∞

0
τ sinh(π − ε)τKiτ (x)Kiτ [f ]dτ, (1.11)
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where the limit in (1.11) is understood with respect to the norm (1.10) in Lν,p(R+), 0 <
ν < 1.

The transformation (1.9) was extended in [12] on distributions of compact support.
Later on it was studied in larger spaces of distributions (cf. [1, 3, 5]). Another approach
of such extensions was considered in [4, 10].

Our goal is to prove that the class Aν,p is a testing-function space, which will
generalize some known testing-function spaces (see [1, 3, 4]) related to the Kontorovich-
Lebedev transform. Furthermore, we will show that this space can be used to study
the Kontorovich-Lebedev transform of a complex index for distributions from the dual
space A′

ν,p into the space of analytic functions in a vertical strip. Our goal is also
to study its existence, uniqueness and inversion properties on a manner to be found
in [13]. These results are finally applied to give a solution of the Dirichlet problem
for a wedge for the Laplace equation in cylindrical coordinates, which is associated
with operator (1.2) and its iterations. We note that such a problem is considered for
instance in [11], where a formal solution is found.

2. Properties of the space Aν,p and its dual

We begin to show that the class Aν,p is a testing function space, which is associated
with the multinorm (1.1). Indeed, it is easily seen that Aν,p is a linear space, each
αk,ν is a seminorm, and α0,ν,p is clearly a norm on Aν,p. We equip Aν,p as usual
with the topology that is generated by {αk,ν,p}∞k=0, and this makes Aν,p a countably
multinormed space. Since with the Minkowski inequality

(∫ ∞

0

∣∣∣Ak
xϕ

∣∣∣p xνp−1dx

)1/p

=

(∫ ∞

0

∣∣∣∣(1 + x2
)1/p

Ak
xϕ

∣∣∣∣p xνp−1

1 + x2
dx

)1/p

≤
(∫ ∞

0

∣∣∣(1 + x2/p
)

Ak
xϕ

∣∣∣p xνp−1

1 + x2
dx

)1/p

≤

∫ ∞

0

∣∣∣xν−1/pAk
xϕ

∣∣∣p
1 + x2

dx




1/p

+


∫ ∞

0

∣∣∣xν+1/pAk
xϕ

∣∣∣p
1 + x2

dx




1/p

≤
(

π

2

)1/p

sup
x>0

(∣∣∣Ak
xϕ

∣∣∣ xν−1/p +
∣∣∣Ak

xϕ
∣∣∣ xν+1/p

)
,

it follows that the space Aν,p contains functions from spaces like in [1, 3, 12]. Under
this formulation Aν,p turns out to be a testing -function space [13]; this will be proved
below. Furthermore, Aν,p is a subspace of the space Lν,p(R+) [7, 8] and convergence
in Aν,p implies convergence in Lν,p(R+).

Following the same procedure that was used in [13] we establish the completeness
of the space Aν,p by proving
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Lemma 1

Aν,p is complete and therefore a Frechet space.

Proof. Let {ϕm}∞m=1 be a Cauchy sequence in Aν,p. Then, for each k and some
ν > 0 we have that {ϕm}∞m=1 is a Cauchy sequence in Lν,p(R+). By the completeness
of Lν,p(R+) there exists a function ρk ∈ Lν,p(R+), which is the limit in Lν,p(R+) of
{Ak

xϕm}∞m=1. We will show that ρk is almost everywhere on R+ equal to Ak
xχ0, where

χ0 ∈ Aν,p is independent of k.
Let x1 > 0 be a fixed point and x a variable point in R+. From (1.2) we have

x
d

dx

[
x

d

dx
Ak

xϕm

]
= x2Ak

xϕm − Ak+1
x ϕm. (2.1)

Hence, dividing by x and integrating with respect to x over the interval [x1, x] we
obtain

x
d

dx
Ak

xϕm =
∫ x

x1

(
xAk

xϕm − x−1Ak+1
x ϕm

)
dx + am, (2.2)

where am = x1

[
d
dxAk

xϕm

]
x=x1

is a constant.

By using the Hölder and Minkowski inequalities on the interval [x1, x] we may
write ∣∣∣∣

∫ x

x1

(
xAk

x (ϕm − ϕn) − x−1Ak+1
x (ϕm − ϕn)

)
dx

∣∣∣∣
≤

(∫ x

x1

x
(
1−ν+ 1

p

)
q
dx

)1/q (∫ ∞

0

∣∣∣Ak
x (ϕm − ϕn)

∣∣∣p xνp−1dx

)1/p

+
(∫ x

x1

x−νq−1dx

)1/q (∫ ∞

0

∣∣∣Ak+1
x (ϕm − ϕn)

∣∣∣p xνp−1dx

)1/p

, (2.3)

where q = p
p−1 . Clearly, the first integrals in the products on the right-hand side of (2.3)

are bounded smooth functions on every open interval I whose closure is compact in
R+. The second integrals converge to zero as m and n tend to infinity independently.
This shows that the left-hand side of (2.3) converges to zero uniformly on every such an
interval I. In the same manner returning to (2.2) it is not difficult to get the equality

Ak
xϕm =

∫ x

x1

dx

x

∫ x

x1

(
xAk

xϕm − x−1Ak+1
x ϕm

)
dx + am log

x

x1
+ bm, (2.4)

where bm = Ak
x1

ϕm is a constant. Since Ak
xϕm converges in Lν,p(I) for every I and the

iterated integral in (2.3) converges uniformly on I as m → ∞ (cf. in (2.3)), we conclude
that the sequence {ψm}∞m=1, where ψm(x) = am log x

x1
+ bm converges in Lν,p(I).

Further, since the measure of the interval I is finite and p ≥ 2, it follows immediately
that ψm(x) converges in Lν,2(I). Moreover, it is easily seen that coefficients am, bm

tend to limits, say a and b, correspondingly. Consequently, ψm(x) and therefore Ak
xϕm

converge uniformly on every I.
We denote by χk(x) the uniform limit of the sequence {Ak

xϕm}∞m=1, which is
evidently a continuous function on I. Moreover, this is true for any k. Therefore
passing to the limit in (2.4) when m → ∞ we find

χk(x) =
∫ x

x1

dx

x

∫ x

x1

(
xχk(x) − x−1χk+1(x)

)
dx + a log

x

x1
+ b. (2.5)
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Hence we obtain that χk(x) is a smooth function and making necessary differentiation
in (2.5) we derive that χk+1(x) = Axχk. Thus χk(x) = Ak

xχ0.
Meantime, ρk(x) = χk(x) almost everywhere on I, since χk(x) is the uniform

limit on every I of the sequence {Ak
xϕm}∞m=1 and ρk(x) is the limit in Lν,p(R+) of

{Ak
xϕm}∞m=1. Thus both Ak

xχ0 and ρk(x) are in the same equivalence class in Lν,p(R+).
It follows from (1.1) that for every k and some ν αk,ν,p(χ0) = α0,ν,p(Ak

xχ0) < ∞ and

αk,ν,p(χ0 − ϕm) = α0,ν,p(Ak
xχ0 − Ak

xϕm) → 0,

as m → ∞. Lemma 1 is proved. �

Denoting by D(R+), E(R+) customary spaces of testing functions encountered in
distribution theory [13] it is easily seen that D(R+) ⊂ Aν,p ⊂ E(R+). Since D(R+) is
dense in E(R+), we have that Aν,p is also dense in E(R+). The following lemma will
be used in the sequel.

Lemma 2

Let ϕ ∈ D(R+). Then ϕ can be represented by the Lebedev integral

ϕ(x) = lim
ε→0+

i

π2

∫ µ+i∞

µ−i∞
s sin(π − ε)s Ks(x)

∫ ∞

0
Ks(y)ϕ(y)

dy

y
ds, (2.6)

where the limit is understood as a convergence in Aν,p with 0 < ν < 1.

Proof. As we have seen above for each s the modified Bessel function Ks(z) is analytic
at least in the sector | arg z| < π

2 − δ, δ ∈ [
0, π

2

)
, which contains R+. Moreover,

employing the estimate (1.8) it is not difficult to establish under condition of the
lemma the uniform convergence of the outward integral (2.6) on every compact interval
[x0, X0] ⊂ R+. Thus denoting by

ϕε(x) =
i

π2

∫ µ+i∞

µ−i∞
s sin(π − ε)s Ks(x)

∫ ∞

0
Ks(y)ϕ(y)

dy

y
ds, (2.7)

we may repeatedly differentiate under the integral sign to obtain

Ak
xϕε =

i

π2

∫ µ+i∞

µ−i∞
s sin(π − ε)s Ak

xKs(x)
∫ ∞

0
Ks(y)ϕ(y)

dy

y
ds. (2.8)

Hence invoking (1.3), we integrate by parts in the inner integral with respect to y,
where integrated terms are vanishing since ϕ ∈ D(R+). Thus we arrive at the equality

Ak
xϕε =

i

π2

∫ µ+i∞

µ−i∞
s sin(π − ε)s Ks(x)

∫ ∞

0
Ks(y)Ak

yϕ
dy

y
ds. (2.9)

Further, we change the order of integration in (2.9) by the Fubini theorem and we find

Ak
xϕε =

∫ ∞

0
K(x, y)Ak

yϕ
dy

y
. (2.10)

where we denote by

K(x, y) =
i

π2

∫ µ+i∞

µ−i∞
s sin(π − ε)s Ks(x)Ks(y)ds. (2.11)
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We calculate the integral by appealing to Cauchy’s theorem and shifting the contour of
integration to the imaginary axis. This is indeed possible, since via the analyticity of
the integrand with respect to s in the strip |Res| < |µ| we choose for instance µ,B > 0
to write

(∫ µ−iB

−iB
+

∫ µ+iB

µ−iB
+

∫ iB

µ+iB
+

∫ −iB

iB

)
s sin(π − ε)s Ks(x)Ks(y)ds = 0

= I1 + I2 + I3 + I4.

However the integrals I1, I3 tend to zero when B → ∞ for each ε ∈ (0, π), x > 0, y ∈
supp Ak

yϕ by virtue of inequality (1.8). This gives the desired shift of the contour.
Then using relation (2.16.51.8) in [6, Vol. II] we calculate the kernel (2.11) and we
write (2.10) in the form

Ak
xϕε =

x sin ε

π

∫ ∞

0

K1((x2 + y2 − 2xy cos ε)1/2)
(x2 + y2 − 2xy cos ε)1/2

Ak
yϕdy. (2.12)

To end the proof we appeal to the properties of the singular integral (2.12) (see in [7, 8,
9]), which give the convergence Ak

xϕε to Ak
xϕ with respect to the norm in Lν,p(R+), 0 <

ν < 1, p ≥ 1 when ε → 0+. Thus we derive

αk,ν,p(ϕε − ϕ) = α0,ν,p(Ak
xϕε − Ak

xϕ) → 0, ε → 0 + .

Lemma 2 is proved. �

As usual we denote by A′
ν,p the dual of Aν,p. It’s equipped with the weak topology

and represents a Hausdorff locally convex space of distributions. From the imbedding
above we obtain that E ′(R+) ⊂ A′

ν,p. Since Aν,p ⊂ Lν,p(R+) we imbed the dual space
L1−ν,q(R+), q = p

p−1 into A′
ν,p as a subspace of regular distributions. They act upon

elements ϕ from Aν,p according to

〈f, ϕ〉 :=
∫ ∞

0
f(x)ϕ(x)dx. (2.13)

The continuity of the linear functional (2.13) on Aν,p follows from the fact that if
{ϕm}∞m=1 converges in Aν,p to zero, then by the Hölder inequality

|〈f, ϕm〉| ≤ α0,1−ν,q(f)α0,ν,p(ϕm) → 0, m → ∞.

We note that this imbedding of L1−ν,q(R+) into A′
ν,p is one-to-one. Indeed, if two

members f and g of L1−ν,q(R+) become imbedded at the same element of A′
ν,p, then

〈f, ϕ〉 = 〈g, ϕ〉 for every ϕ ∈ D(R+). But this will imply that f = g almost everywhere
on R+ (cf. in [13]). Finally from the general theory of continuous linear functionals
on countably multinormed spaces follows that for each element f ∈ A′

ν,p there exists a
nonnegative integer r and a positive constant C such that

|〈f, ϕ〉| ≤ Cmax0≤k≤rαk,ν,p(ϕ) (2.14)

for every ϕ ∈ Aν,p. Here r, C depends on f but not on ϕ.
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3. The Kontorovich-Lebedev transformation

We introduce the Kontorovich-Lebedev transformation on distributions f ∈ A′
ν,p in a

similar way as in [12]. Namely, it is defined by

KL[f ](s) := 〈f,Ks(·)〉, s ∈ C. (3.1)

It is easily seen from (1.4), (1.5), (1.8), (1.10) that Ks(x) ∈ Lν,p(R+) when |Res| < ν.
Moreover it belongs to Aν,p under the same condition since via (1.3) we have
|Ak

xKs(x)| = |s|2k|Ks(x)|. Hence for regular distributions f ∈ L1−ν,q(R+) the Kon-
torovich -Lebedev transformation Ks[f ] can be written in the form (2.13), which co-
incides with (1.9) when s = iτ is a pure imaginary index. In this case we immediately
obtain that Ks[f ] represents an analytic function in the open vertical strip |Res| < ν
(cf. in [7, Theorem 2.5]).

As in the classical case, the Kontorovich-Lebedev transformation (3.1) is an ana-
lytic function in the strip of definition. More precisely, we have

Theorem 1

For each f ∈ A′
ν,p KL[f ](s) is analytic on the strip Ων := {s = Res+iτ, |Res| < ν}

and its derivative is given by

F ′(s) :=
d

ds
KL[f ](s) =

〈
f,

∂

∂s
Ks(·)

〉
, s ∈ Ων . (3.2)

Furthermore, the following estimate is true

|KL[f ](s)| ≤ Cf,δ,p,νmax{1, |s|2r}e−(π/2−δ)|τ |, s ∈ Ων , (3.3)

where δ ∈ (
0, π

2

]
, r ∈ N and Cf,δ,p,ν > 0 is a constant.

Proof. Let s be an arbitrary fixed point in Ων . We choose 0 < ν0 < ν such that
s, s + ∆s ∈ Ων0 , where ∆s is a complex increment such that |∆s| < r0. We show that
KL[f ](s) admits a derivative in each inner strip Ων0 . In view of our freedom to choose
ν0 arbitrarily close to ν we will establish the analyticity of KL[f ](s) on Ων .

Since the modified Bessel function Ks(x) is an entire function of s then with
∆s 
= 0 we invoke the definition (3.1) of KL[f ](s) to write

KL[f ](s + ∆s) −KL[f ](s)
∆s

−
〈

f,
∂

∂s
Ks(·)

〉
= 〈f,Ψ∆s(·)〉 , (3.4)

where
Ψ∆s(x) =

1
∆s

[Ks+∆s(x) − Ks(x)] − ∂

∂s
Ks(x).

We will show that Ψ∆s(x) ∈ Aν,p so that (3.4) has a sense. Moreover, we will prove
that as |∆s| → 0 Ψ∆s(x) converges in Aν,p to zero. Because f ∈ A′

ν,p this will imply
that the right-hand side of (3.4) tends to zero. Therefore in view of (3.4) we will
get (3.2).

To do this we find a circle C with center at s and radius r1 where 0 < r0 <
r1 < min(ν0 + Res, ν0 − Res). Hence we may interchange differentiation on s with
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differentiation on x and invoke Cauchy’s integral formulas. Taking into account (1.3)
as a result we obtain

(−1)kAk
xΨ∆s =

(−1)k

∆s

[
Ak

xKs+∆s(x) − Ak
xKs(x)

]
− (−1)k ∂

∂s
Ak

xKs(x)

=
1

∆s

[
(s + ∆s)2kKs+∆s(x) − s2kKs(x)

]
− ∂

∂s

[
s2kKs(x)

]

=
1

2πi∆s

∫
C

(
1

t − s − ∆s
− 1

t − s

)
t2kKt(x)dt − 1

2πi

∫
C

t2kKt(x)
(t − s)2

dt

=
∆s

2πi

∫
C

t2kKt(x)
(t − s − ∆s)(t − s)2

dt.

Hence via (1.1), (1.8) with the generalized Minkowski inequality and since

|t − s − ∆s| > r1 − r0 > 0, |t − s| = r1, |t| < |s| + r1

we deduce

αk,ν,p (Ψ∆s) ≤ |∆s|
2π

(|s| + r1)2k

(r1 − r0)r2
1

∫
C

(∫ ∞

0
Kp

Ret(x)xνp−1dx

)1/p

|dt|

≤ |∆s|(|s| + r1)2k

(r1 − r0)r1

(∫ ∞

0
Kp

ν0
(x)xνp−1dx

)1/p

= Bs,ν,p,k|∆s| → 0, |∆s| → 0,

where Bs,ν,p,k > 0 is a constant. Thus Ψ∆s(x) converges in Aν,p to zero.
In order to prove (3.3) we recall inequalities (1.8), (2.14). Then via (3.2) we write

|KL[f ](s)| ≤ Cmax0≤k≤rαk,ν,p(Ks(x))

≤ Ce−(π/2−δ)|τ |
(∫ ∞

0
Kp

Res(x sin δ)xνp−1dx

)1/p

max0≤k≤r|s|2k

≤ Cf,δ,p,νmax{1, |s|2r}e−(π/2−δ)|τ |, s ∈ Ων .

Theorem 1 is proved. �

We are ready to prove now an inversion theorem for the transformation (3.1).
Indeed, we have

Theorem 2

Let f ∈ A′
ν,p with 0 < ν < 1. Then

f(x) = lim
ε→0+

i

xπ2

∫ µ+i∞

µ−i∞
s sin(π − ε)sKs(x)KL[f ](s)ds, |µ| < ν, (3.5)

where the convergence is understood in D′(R+).

Proof. We observe that formula (3.5) means the following equality

〈f, ϕ〉 = lim
ε→0+

〈
i

·π2

∫ µ+i∞

µ−i∞
s sin(π − ε)sKs(·)KL[f ](s)ds, ϕ

〉
(3.6)
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for every ϕ ∈ D(R+) having a support, let say, in the closed interval [a, b] ⊂ R+. By
using our discussions above it is easily seen that the integral with respect to s in (3.6)
is absolutely convergent for each ε > 0 and can be treated as a Riemann improper
integral. Furthermore with inequality (1.8) we show that the expression under the
limit sign is a regular distribution. Therefore it is equal to

i

π2

∫ b

a
y−1ϕ(y)

∫ µ+i∞

µ−i∞
s sin(π − ε)sKs(y)KL[f ](s)dsdy. (3.7)

Appealing to the Fubini theorem we change the order of integration in (3.7) and we
write it in the form

i

π2

∫ µ+i∞

µ−i∞
s sin(π − ε)sKL[f ](s)

∫ b

a
y−1ϕ(y)Ks(y)dyds

=
i

π2
lim

T→∞

∫ µ+iT

µ−iT
s sin(π − ε)sKL[f ](s)

∫ b

a
y−1ϕ(y)Ks(y)dyds. (3.8)

Invoking (3.1) and the Riemann sums technique (cf. in [10, 12, 13]) it is not difficult
to prove that

i

π2

∫ µ+iT

µ−iT
s sin(π − ε)sKL[f ](s)

∫ b

a
y−1ϕ(y)Ks(y)dyds = 〈f,ΘT,ε〉,

where

ΘT,ε(x) =
i

π2

∫ µ+iT

µ−iT
s sin(π − ε)sKs(x)

∫ b

a
y−1ϕ(y)Ks(y)dyds

is an element of Aν,p. Meanwhile, we will show that ΘT,ε(x) → ϕε(x) in Aν,p as
T → ∞, where ϕε(x) is defined by (2.7). Indeed, choosing 0 < δ < ε

2 we employ (1.3),
(1.8) and the generalized Minkowski inequality. Hence we have

αk,ν,p (ΘT,ε − ϕε) =
1
π2

(∫ ∞

0
xνp−1dx

∣∣∣∣∣
∫
|Ims|≥T

s sin(π − ε)sAk
xKs(x)

×
∫ b

a
y−1ϕ(y)Ks(y)dyds

∣∣∣∣∣
p)1/p

≤ 1
π2

(∫ ∞

0
Kµ(x sin δ)xνp−1dx

)1/p

×
∫ b

a
y−1|ϕ(y)|Kµ(y sin δ)dy

×
∫
|Ims|≥T

|s|2k+1| sin(π − ε)s|e(−π+2δ)|Ims||ds|

≤ Cδ,ν,p

∫
|Ims|≥T

|s|2k+1e(2δ−ε)|Ims||ds| → 0, T → ∞,

where Cδ,ν,p > 0 is a constant. Thus combining with (3.8) we arrived at the equality

i

π2

∫ µ+i∞

µ−i∞
s sin(π − ε)sKL[f ](s)

∫ b

a
y−1ϕ(y)Ks(y)dyds = 〈f, ϕε〉. (3.9)
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To end the proof of Theorem 2 we pass to the limit through (3.9) when ε → 0+.
Hence by using Lemma 2 we get (3.6) and we establish the inversion formula (3.5).
Theorem 2 is proved. �

By using Theorem 2 we can readily prove the uniqueness property for the
Kontorovich-Lebedev transformation (3.1).

Corollary 3

If KL[f ](s) = F (s) and KL[g](s) = G(s), s ∈ Ων , 0 < ν < 1 and if F (s) =
G(s), s ∈ Ων then f = g in the sense of equality in D′(R+).

Proof. Under conditions of the corollary f and g must assign the same value for each
ϕ ∈ D(R+). Thus by invoking Theorem 2 and equating f and g in (3.5) we immediately
obtain 〈f, ϕ〉 = 〈g, ϕ〉, which proves Corollary 3. �

4. Dirichlet’s problem for a wedge

As an application let us consider Dirichlet’s problem for a wedge (r, θ) with the origin at
the apex and the sides of the wedge along the radial lines θ = 0 and θ = α (0 < α ≤ π).
The problem for the interior of this wedge is to find a function u(r, θ) that satisfies the
following harmonic type equation

A∗
ru =

∂2u

∂θ2
, 0 < r < ∞, 0 < θ < α, (4.1)

where A∗
r is the adjoint operator to Ar

A∗
r = r2 − 1 − 3r

∂

∂r
− r2 ∂2

∂r2
. (4.2)

We assume that u(r, θ) is twice differentiable with respect to θ in a sense of a conven-
tional derivative (cf. [13, Section 2.6]).

We impose the following boundary conditions:
1. As θ → 0+, u(r, θ) → f(r) in A′

ν,p, 0 < ν < 1, p ≥ 2 for any ϕ such that
ϕ(r), rϕ(r) ∈ Aν,p.

2. As θ → α−, u(r, θ) converges to zero under the same conditions.
This problem can be solved through an operational technique by the Kontorovich-

Lebedev transformation (3.1). Indeed, applying (3.1) to both sides of the equation (4.1)
and appealing to definitions of the adjoint operator and a conventional derivative we
arrive at the equality

〈u(·, θ), A·Ks(·)〉 − ∂2

∂θ2
〈u(·, θ),Ks(·)〉 = 0. (4.3)

Hence via (1.3) we obtain

s2KL[u(·, θ)](s) +
∂2

∂θ2
KL[u(·, θ)](s) = 0. (4.4)
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Solving this differential equation we find

KL[u(·, θ)](s) = A(s)eisθ + B(s)e−isθ, (4.5)

where the unknown functions A(s), B(s) do not depend on θ. To determine A and
B we first transform the boundary conditions. Indeed, as we have seen above the
modified Bessel function Ks(r) ∈ Aν,p when |Res| < ν. In order to show that for each
s, |Res| < ν the function rKs(r) belongs to Aν,p, 0 < ν < 1 we use relation (2.16.33.2)
from [6, Vol. II] and reciprocal inversion formula like (1.11) for the Kontorovich-
Lebedev transform [7] to derive the integral representation

rKs(r) =
∫ ∞

0

τ sinhπτKiτ (r)
cos πs + cosh πτ

dτ, |Res| < 1.

Hence with (1.1), (1.3), (1.8), (1.10) and the generalized Minkowski inequality we
deduce the estimate

αk,ν,p (·Ks(·)) ≤
∫ ∞

0

τ sinhπτ

| cos πs + cosh πτ |αk,ν,p (Kiτ (·)) dτ

=
∫ ∞

0

τ2k+1 sinhπτ

| cos πs + cosh πτ | ||Kiτ (·)||ν,pdτ

≤
(∫ ∞

0
Kp

0 (r sin δ)rνp−1dr

)1/p

×
∫ ∞

0

τ2k+1e(π
2
+δ)τ

| cos(πs) + cosh πτ |dτ < ∞,

|Res| < ν < 1, δ ∈ (
0, π

2

)
, k = 0, 1, 2, . . . . Thus we get rKs(r) ∈ Aν,p and therefore

invoking (4.5), (3.1) we have

lim
θ→0+

KL[u(·, θ)](s) = KL[f ](s) = A(s) + B(s), (4.6)

lim
θ→α−

KL[u(·, θ)](s) = 0 = A(s)eisα + B(s)e−isα. (4.7)

Combining with (4.5), (4.6), (4.7) and making elementary calculations we derive

KL[u(·, θ)](s) =
sin (s(α − θ))

sin αs
KL[f ](s). (4.8)

Consequently, invoking Theorem 2 we obtain as our possible solution

u(r, θ) = lim
ε→0+

i

rπ2

∫ µ+i∞

µ−i∞
s sin(π − ε)s Ks(r)

sin (s(α − θ))
sin αs

KL[f ](s)ds, (4.9)

where |µ| < ν < 1. It is easily seen that the integrand in (4.9) is analytic on the
strip Ων (cf. (3.2)). Moreover, appealing to (1.8), (3.3) we get the uniform estimate
on ε ∈ [0, π] and −ν < µ < ν∣∣∣∣s sin(π − ε)s Ks(r)

sin (s(α − θ))
sin αs

KL[f ](s)
∣∣∣∣ ≤ const.|τ |2a+1 exp ((2δ − θ)|τ |)

× Kµ(r0 sin δ), (4.10)
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where τ = Ims, a > 0, 0 < 2δ < θ ≤ α, 0 < r0 < r < ∞. Therefore one can pass to
the limit under the integral sign in (4.9) when ε → 0+. Hence we write our solution
in the form

u(r, θ) =
i

rπ2

∫ µ+i∞

µ−i∞
s sin πs Ks(r)

sin (s(α − θ))
sin αs

KL[f ](s)ds. (4.11)

Our goal now is to prove that (4.11) is indeed a solution, which satisfies the differ-
ential equation (4.1) and the corresponding boundary conditions. In order to verify
that (4.11) is a solution of (4.1) we use (4.10) and the fact that the integrand in (4.11) is
analytic on the strip Ων . Consequently, the differentiations may be interchanged with
the integration. Moreover, by straightforward calculations we see that the function

Ks(r)
sin (s(α − θ))

r sin αs

satisfies (4.1). Thus u(r, θ) is a solution of (4.1).
We turn now to the boundary conditions. First we show that r u(r, θ) ∈ Aν,p ∩

L1−ν,q(R+) for any 0 < θ ≤ α, q = p/(p − 1), 0 < ν < 1. Indeed, from the uniform
convergence of the integral (4.11) with respect to r ∈ R+ we see that r u(r, θ) is a
smooth function. Moreover, invoking (1.1), (1.8), (1.10), (3.3) and the generalized
Minkowski inequality we obtain the estimate

||A·[·u(·, θ)]||ξ,ω ≤ const.
∫ ∞

−∞
|τ |2a+1 exp ((2δ − θ)|τ |) dτ

×
(∫ ∞

0
Kω

µ (r sin δ)rξω−1dr

)1/ω

< ∞, (4.12)

a > 0, ω > 1, |µ| < ξ, ξ > 0, for any θ, such that 0 < 2δ < θ ≤ α, where δ > 0 can be
chosen as a sufficiently small number. Thus, in particular ru(r, θ) ∈ Aν,p ∩L1−ν,q(R+)
with 0 < θ ≤ α, q = p/(p − 1), 0 < ν < 1. Furthermore for any ϕ such that
ϕ(r), rϕ(r) ∈ Aν,p via (2.13) we write

〈·u(·, θ), ϕ〉 = 〈u(·, θ), ·ϕ〉 =
∫ ∞

0
ru(r, θ)ϕ(r)dr

=
i

π2

∫ ∞

0
ϕ(r)

∫ µ+i∞

µ−i∞
s sin πs Ks(r)

sin (s(α − θ))
sin αs

KL[f ](s)ds dr

=
i

π2

∫ µ+i∞

µ−i∞
s sin πs

∫ ∞

0
ϕ(r)Ks(r)dr

× sin (s(α − θ))
sin αs

KL[f ](s)ds, (4.13)

where the change of the order of integration in (4.13) is due to Fubini’s theorem, and
this fact can be easily motivated by (4.10), (4.12) with the Hölder inequality. Precisely
we appeal to the estimate∫ µ+i∞

µ−i∞
|s sin πs|

∫ ∞

0
|ϕ(r)Ks(r)|

∣∣∣∣sin (s(α − θ))
sin αs

KL[f ](s)ds

∣∣∣∣ dr

≤ α0,ν,p(ϕ)
∫ ∞

−∞
|τ |2a+1 exp ((2δ − θ)|τ |) dτ

×
(∫ ∞

0
Kq

µ(r sin δ)r(1−ν)q−1dr

)1/q

< ∞,
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where q = p
p−1 , a > 0, 0 < δ < θ/2 and |µ| < min(1−ν, ν). Hence in a similar manner

it is not difficult to see that the latter iterated integral in (4.13) converges uniformly
with respect to θ on every interval β ≤ θ ≤ α, where β > 2δ > 0. Therefore we may
take the limit under the integral sign in (4.13) as θ → α− to get

lim
θ→α−

〈u(·, θ), ·ϕ〉 = 0.

Thus the second boundary condition is verified.
In order to verify the first boundary condition it is sufficient to show that for any

ϕ such that ϕ(r), r ϕ(r) ∈ Aν,p

lim
θ→0+

〈u(·, θ), ·ϕ〉 = 〈f, ·ϕ〉.

Since the integrand in (4.11) is analytic on Ων , we can put µ = 0 shifting the contour
of integration to the imaginary axis by using Cauchy’s theorem and the asymptotic
behavior of the integrand at infinity. Hence after elementary substitutions we find

u(r, θ) =
1

rπ2

∫ ∞

−∞
τeπτ Kiτ (r)

sinh (τ(α − θ))
sinhατ

KL[f ](iτ)dτ. (4.14)

Invoking the following relation

sinh (τ(α − θ))
sinhατ

= e−τθ − e−τα sinh θτ

sinhατ

we obtain

r u(r, θ) =
1
π2

∫ ∞

−∞
τe(π−θ)τ Kiτ (r)KL[f ](iτ)dτ − 1

π2

∫ ∞

−∞
τe(π−α)τ

× Kiτ (r)
sinh θτ

sinhατ
KL[f ](iτ)dτ.

Thus

〈u(·, θ), ·ϕ〉 =
∫ ∞

0
ru(r, θ)ϕ(r)dr =

1
π2

∫ ∞

−∞
τe(π−θ)τ KL[f ](iτ)

∫ ∞

0
ϕ(r)Kiτ (r)drdτ

− 1
π2

∫ ∞

−∞
τe(π−α)τ sinh θτ

sinhατ
KL[f ](iτ)

∫ ∞

0
ϕ(r)Kiτ (r)drdτ. (4.15)

In the same manner as in the proof of Theorem 2 we substitute in (4.15) the value of
KL[f ](iτ) by formula (3.1) and we use Riemann sums and their limits to treat integrals
with respect to τ . Finally we arrive at the following relations

1
π2

∫ ∞

−∞
τe(π−θ)τ KL[f ](iτ)

∫ ∞

0
ϕ(r)Kiτ (r)drdτ

=
〈

f,
1
π2

∫ ∞

−∞
τe(π−θ)τ Kiτ (·)

∫ ∞

0
ϕ(r)Kiτ (r)drdτ

〉
, (4.16)

1
π2

∫ ∞

−∞
τe(π−α)τ sinh θτ

sinhατ
KL[f ](iτ)

∫ ∞

0
ϕ(r)Kiτ (r)drdτ

=
〈

f,
1
π2

∫ ∞

−∞
τe(π−α)τ sinh θτ

sinhατ
Kiτ (·)

∫ ∞

0
ϕ(r)Kiτ (r)drdτ

〉
. (4.17)
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Denoting by

ϕ1(y, θ) =
1
π2

∫ ∞

−∞
τe(π−θ)τ Kiτ (y)

∫ ∞

0
ϕ(r)Kiτ (r)drdτ,

we invert the order of integration by Fubini’s theorem and we calculate the integral
with respect to τ invoking the value of the kernel (2.11). As a result we deduce

ϕ1(y, θ) =
y sin θ

π

∫ ∞

0

K1((r2 + y2 − 2ry cos θ)1/2)
(r2 + y2 − 2xy cos θ)1/2

rϕ(r)dr.

It is not difficult to see that ϕ1(y, θ) is an element of Aν,p for each θ ∈ (0, α] and it
converges to yϕ(y) in Aν,p when θ → 0+ (cf. (2.12)). Therefore from (4.16) we have

lim
θ→0+

〈f, ϕ1(·, θ)〉 = 〈f, ·ϕ1〉

and to satisfy the first boundary condition we have to show that

lim
θ→0+

〈f, ϕ2(·, θ)〉 = 0, (4.18)

where
ϕ2(y, θ) =

1
π2

∫ ∞

−∞
τe(π−α)τ sinh θτ

sinhατ
Kiτ (y)

∫ ∞

0
ϕ(r)Kiτ (r)drdτ.

Indeed, invoking (4.10) we prove that ϕ2(y, θ) is an element of Aν,p for each θ ∈ (0, α].
Moreover, since for each y > 0 and δ ∈ (

0, π
2

] ∩ (0, α) (see (1.8))

|ϕ2(y, θ)| ≤ const.K0(y sin δ)
∫ ∞

−∞
|τ |e(2δ−α)τ sinh θτ

sinhατ
dτ

×
∫ ∞

0
|ϕ(r)|K0(r sin δ)dr < ∞,

we take into account that K0(y sin δ) ∈ Aν,p and ϕ ∈ Aν,p ⊂ Lν,p(R+) to write the
estimate

|〈f, ϕ2(·, θ)〉| ≤ const. |〈f, K0(· sin δ)〉|
∫ ∞

−∞
|τ |e(2δ−α)τ sinh θτ

sinhατ
dτ → 0, θ → 0+

due to the dominated convergence theorem. Thus we establish (4.18) and the first
boundary condition is satisfied.
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