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ABSTRACT

We construct a testing-function space, which is equipped with the topology that
is generated by L, ;, - multinorm of the differential operator

and its k-th iterates Af:,

with other testing-function spaces, we introduce in its dual the Kontorovich-

where k = 0,1,..., and A% = . Comparing

Lebedev transformation for distributions with respect to a complex index. The
existence, uniqueness, imbedding and inversion properties are investigated. As
an application we find a solution of the Dirichlet problem for a wedge for the
harmonic type equation in terms of the Kontorovich-Lebedev integral.

1. Introduction

Let Ry = (0,+00), 2 < p < 0o, v > 0 and consider a class A, of complex-valued,
smooth functions ¢(z) on Ry for which the following quantity

k o k |P vp—1 L/p
() = Q0 (A ) = /O Ak 271 (1.1)

Keywords: Testing-function spaces, distributions, Kontorovich-Lebedev transform, modified Bessel
functions, Dirichlet problem for a wedge.
MSC2000: 46F12, 44A15, 33C10, 35J25.
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280 YAKUBOVICH

is finite, for each k € No. Here A¥ where k = 0,1,..., is k-th iterate of the differential
operator

d d
Ay =22 — S {xdm} . (1.2)
As is known, operator (1.2) has an eigenfunction K(z), s = p + i7, which is the
modified Bessel function or the Macdonald function [2] of a complex index s and
satisfies the property

A K (z) = —s*Kq(x). (1.3)

It has the following asymptotic behaviour (cf. [2, 7])

N\ 1/2
Kq(z) = (22) e ?[14+0(1/z)], z — 00, (1.4)
and near the origin
Ks(z) :O(z_|”|) , 2 — 0, (1.5)
Ky(z) =O(log z), z — 0. (1.6)

The modified Bessel function can be represented for instance, by the integrals [2, 7]

0 1 [id+oo
Ks(z) = / e cogh sudu = = / e~ Feoshutsugy, (1.7)
0 10—00

where Rez > 0,6 € [0,5). Hence it is not difficult to show that Ky(z) is an even entire
function with respect to s and it is analytic in a right half-plane with respect to z.
Moreover by using (1.7) and relation (2.3.16.1) in [6, Vol. I] we obtain the estimate

Rez + Imz tan é
Rez — Imztand

|K,(2)] < el ( )WQ K, <\/[Rez cos 6)? — [Imz sin 5]2> , (1.8)

in the sector |argz| < § —4, § € [0,5). In particular, putting § = 0 we get the
elementary inequality |K(z)| < K,(Rez), Rez > 0,5 = p +i7.
The classical Kontorovich-Lebedev transform [7] is defined usually for a pure

imaginary index #7 by the integral
Kirlf) = [ Kir@)f (a)do. (1.9)

If fe L,p(Ry), v<1,ie. (cf. (1.1)) the norm

%) 1/
1Flly = ([ 15@P a7 ) < o, (110

then it is shown in [7, Chapter 2] that (1.9) exists as a Lebesgue integral and K |[f]

is bounded from L, , (R ) into L,(Ry), where p,r € [1,00) has no dependence. More-

over (see [7, 8]) its inversion can be written in terms of the singular integral

2 1 [

— —/ Tsinh(m — )7 K (z) K7 [ fldT, (1.11)
0

5 lm
T e—0+

flz) =
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where the limit in (1.11) is understood with respect to the norm (1.10) in L, ,(R4), 0 <
v<l1.

The transformation (1.9) was extended in [12] on distributions of compact support.
Later on it was studied in larger spaces of distributions (cf. [1, 3, 5]). Another approach
of such extensions was considered in [4, 10].

Our goal is to prove that the class A, , is a testing-function space, which will
generalize some known testing-function spaces (see [1, 3, 4]) related to the Kontorovich-
Lebedev transform. Furthermore, we will show that this space can be used to study
the Kontorovich-Lebedev transform of a complex index for distributions from the dual
space A;p into the space of analytic functions in a vertical strip. Our goal is also
to study its existence, uniqueness and inversion properties on a manner to be found
in [13]. These results are finally applied to give a solution of the Dirichlet problem
for a wedge for the Laplace equation in cylindrical coordinates, which is associated
with operator (1.2) and its iterations. We note that such a problem is considered for
instance in [11], where a formal solution is found.

2. Properties of the space A, , and its dual

We begin to show that the class A, , is a testing function space, which is associated
with the multinorm (1.1). Indeed, it is easily seen that A, , is a linear space, each
oy, is a seminorm, and ag,, is clearly a norm on A,,. We equip A, , as usual
with the topology that is generated by {ay . ,}7>, and this makes A, , a countably
multinormed space. Since with the Minkowski inequality
vp—1 1/p
P VP dx)

(/OOO ‘A’;ng’p a:”plda:> i = (/OOO ’(1 + $2>1/p A:’;go T2

- 1+ 22/7) AFg|” ﬁdm l/p
/0 ’( + ) 190’ 1+ 22

- xu—l/PA];(p’p e
(/0 1+ 22 dx)

1
o xl/+1/pA§gp‘pd /p
+ /0 —1+$2 T

< (5) " sup (el + i),

IN

IN

it follows that the space A, ), contains functions from spaces like in [1, 3, 12]. Under
this formulation A,,,, turns out to be a testing -function space [13]; this will be proved
below. Furthermore, A, , is a subspace of the space L, ,(R) [7, 8] and convergence
in A, , implies convergence in L, ,(R,).

Following the same procedure that was used in [13] we establish the completeness
of the space A, , by proving
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Lemma 1

A, p is complete and therefore a Frechet space.

Proof. Let {¢m}o_; be a Cauchy sequence in A, ,. Then, for each k and some
v > 0 we have that {¢,, };5_; is a Cauchy sequence in L, (R, ). By the completeness
of LVP(R+) there exists a function py € L, ,(R4), which is the limit in LVP(R+) of
{Akp,, 159, We will show that py is almost everywhere on Ry equal to A%y, where
Xo € Ay p is 1ndependent of k.

Let x1 > 0 be a fixed point and = a variable point in Ry. From (1.2) we have

xAkgom] =224k, — Ak, (2.1)

Hence, dividing by z and integrating with respect to = over the interval [z1,x] we
obtain

d x
x—Aﬁapm = / (J:A’;@m — xilA’;H(pm) dx + G, (2.2)
dx o1
where a,, = 21 [%Algg(pm} . is a constant.

By using the Hélder and Minkowski inequalities on the interval [z1,z] we may
write

T

on) =2 AN (@ — pn) ) da

1/q 00 1/p
</ T 1 l/+ qd.’]}') </ ‘Aﬁ (Som _ @n)‘p xl/pld$>
x1 0
1/q o0 1/p
([amrta) " ([T e[ arae) L 29)
0

where g = zﬁ‘ Clearly, the first integrals in the products on the right-hand side of (2.3)
are bounded smooth functions on every open interval I whose closure is compact in
R4. The second integrals converge to zero as m and n tend to infinity independently.
This shows that the left-hand side of (2.3) converges to zero uniformly on every such an
interval /. In the same manner returning to (2.2) it is not difficult to get the equality

gpm = / / $Afchm - a:_lA';ngm) dx + a, log + b, (2.4)
1

IN

where b, = Awlgom is a constant. Since A¥p,, converges in L, ,(I) for every I and the
iterated integral in (2.3) converges uniformly on I as m — oo (cf. in (2.3)), we conclude
that the sequence {¢mm}_;, where ¢ (z) = aplog 5 + by, converges in L, ,([).
Further, since the measure of the interval [ is finite and p > 2, it follows immediately
that ., (x) converges in L, 2(I). Moreover, it is easily seen that coefficients a,, by,
tend to limits, say a and b, correspondingly. Consequently, v,,,(x) and therefore A%,
converge uniformly on every I.

We denote by xi(z) the uniform limit of the sequence {A¥y,,}°_;, which is
evidently a continuous function on I. Moreover, this is true for any k. Therefore
passing to the limit in (2.4) when m — oo we find

rdx [* _ x
Xk(2) = / */ (33Xk(95) -z 1Xk+1(90)) dx + alog — 4. (2.5)
z1 LT Jaxy xr1
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Hence we obtain that xx(z) is a smooth function and making necessary differentiation
in (2.5) we derive that yy1(z) = Ayxg. Thus xx(z) = Akxo

Meantime, pg(z) = xr(z) almost everywhere on I, since yj(z) is the uniform
limit on every I of the sequence {AXp,,}%° | and pi(x) is the limit in L, ,(Ry) of
{A¥p,, 150 . Thus both A¥xq and py(z) are in the same equivalence class in L, ,(R).
It follows from (1.1) that for every k and some v ay,,(X0) = @0.p(A%x0) < 00 and

e p(X0 = Pm) = aO,u,p(AI;XO Ak‘ﬂm) — 0,
as m — oo. Lemma 1 is proved. O

Denoting by D(R4), (R4 ) customary spaces of testing functions encountered in
distribution theory [13] it is easily seen that D(R;) C A, , C E(Ry). Since D(Ry) is
dense in £(R;), we have that A, ,, is also dense in £(R1). The following lemma will
be used in the sequel.

Lemma 2
Let ¢ € D(Ry). Then ¢ can be represented by the Lebedev integral
) 7 p+io0 ) 00 dy
o(r) = lim —2/ ssin(m —¢)s Ks(x)/ Ks(y)p(y)—ds, (2.6)
e—=0+ 7% Jy—ico 0 Y
where the limit is understood as a convergence in A,,, with 0 < v < 1.

Proof. As we have seen above for each s the modified Bessel function K(z) is analytic

at least in the sector |argz| < § — 4, § € [0, ), which contains Ry. Moreover,

employing the estimate (1.8) it is not difficult to establish under condition of the
lemma the uniform convergence of the outward integral (2.6) on every compact interval
[x0, Xo] € Ry. Thus denoting by

Pe(z) = % /;Z:O ssin(m —¢)s Ky(z) /OOO Ks(y)cp(y)iydsa (2.7)

we may repeatedly differentiate under the integral sign to obtain
p4-i00 d
gogf—/ ssin(m —e)s APK / K( yd (2.8)

Hence invoking (1.3), we integrate by parts in the inner integral with respect to v,
where integrated terms are vanishing since ¢ € D(R,). Thus we arrive at the equality

Akp, = — /NHOO ssin(m —e)s K / Ky( Akgodyds (2.9)
Further, we change the order of integration in (2.9) by the Fubini theorem and we find
Ak, = /OOO/C(x,y)AZwC?- (2.10)

where we denote by

K(z,y) = % / M ssin(m — &)s Ko(x) Ky (y)ds. (2.11)

H—100
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We calculate the integral by appealing to Cauchy’s theorem and shifting the contour of
integration to the imaginary axis. This is indeed possible, since via the analyticity of
the integrand with respect to s in the strip |Res| < || we choose for instance p, B > 0
to write

u—iB p+iB iB —iB
/ +/ _|_/ +/ ssin(m — ¢)s Ks(z)Ks(y)ds =0
_iB u—1iB p+iB iB

=L+ I+ 13+ 14

However the integrals I, Is tend to zero when B — oo for each € € (0,7),x > 0,y €
supp Aly“gp by virtue of inequality (1.8). This gives the desired shift of the contour.
Then using relation (2.16.51.8) in [6, Vol. II] we calculate the kernel (2.11) and we
write (2.10) in the form

Afc‘pe =

rsine /00 Ki((z% 4 y? — 2zy cose)/?)
0

Akody. 2.12
(22 + y? — 22y cose)l/? y Py (2.12)

7r
To end the proof we appeal to the properties of the singular integral (2.12) (see in [7, 8,
9]), which give the convergence A%, to A%y with respect to the norm in L, ,(Ry), 0 <
v <1,p > 1 when € — 0+. Thus we derive

Uhwp(e — ) = Q0 p( Al — Alp) =0, € = 0+
Lemma 2 is proved. U

As usual we denote by A;, , the dual of A, ;. It’s equipped with the weak topology
and represents a Hausdorff locally convex space of distributions. From the imbedding
above we obtain that &'(R}) C A;, . Since Ay, C Lyp(Ry) we imbed the dual space
Li—yqRy), ¢= ﬁ into .A'V,p as a subspace of regular distributions. They act upon
elements ¢ from A, ) according to

o) = | ” F@)p(x)da. (2.13)

The continuity of the linear functional (2.13) on A, , follows from the fact that if
{em}o_; converges in A, , to zero, then by the Holder inequality

[(f, om)| < a01-vq(f)owp(em) — 0, m — oo.

We note that this imbedding of L;_, 4(Ry) into A;, , is one-to-one. Indeed, if two
members f and g of L1, 4(R ) become imbedded at the same element of A;, ,, then
(f, ) = (g,¢) for every ¢ € D(R). But this will imply that f = g almost everywhere
on Ry (cf. in [13]). Finally from the general theory of continuous linear functionals
on countably multinormed spaces follows that for each element f € Aj, , there exists a

nonnegative integer r and a positive constant C' such that

|<f7 90>| < CmaXOSkSrak,u,p(So) (214)

for every ¢ € A, ;. Here r,C depends on f but not on ¢.
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3. The Kontorovich-Lebedev transformation

We introduce the Kontorovich-Lebedev transformation on distributions f € A;, , in a
similar way as in [12]. Namely, it is defined by

KL[f](s) := {f, Ks()), s € C. (3.1)

It is easily seen from (1.4), (1.5), (1.8), (1.10) that Ky(z) € L, p(Ry) when |Res| < v.
Moreover it belongs to A,, under the same condition since via (1.3) we have
|AEK(z)| = |s|?*|Ks(z)|. Hence for regular distributions f € L1, 4(R;) the Kon-
torovich -Lebedev transformation K,[f] can be written in the form (2.13), which co-
incides with (1.9) when s = i7 is a pure imaginary index. In this case we immediately
obtain that K[f] represents an analytic function in the open vertical strip |Res| < v
(cf. in [7, Theorem 2.5]).

As in the classical case, the Kontorovich-Lebedev transformation (3.1) is an ana-
lytic function in the strip of definition. More precisely, we have

Theorem 1

For each f € A;,, KL[f](s) is analytic on the strip ), := {s = Res+ir, |[Res| < v}
and its derivative is given by

d 0
F'(s) := gKL[f](s) = <f, &SKS()> , S € Q. (3.2)
Furthermore, the following estimate is true
IKL[f)(5)] < Cfsppmax{l,|s|? te” /2205 €, (3.3)

where 6 € (0,%],7 € N and Cysp, > 0 is a constant.

Proof. Let s be an arbitrary fixed point in €2,. We choose 0 < 1y < v such that
s, s+ As € Q,,, where As is a complex increment such that |As| < rg. We show that
KL[f](s) admits a derivative in each inner strip €2,,. In view of our freedom to choose
v arbitrarily close to v we will establish the analyticity of KL[f](s) on £,.

Since the modified Bessel function K (x) is an entire function of s then with
As # 0 we invoke the definition (3.1) of ICL[f](s) to write

KL[f](s+ AASi — KL[f](s) _ <f, ;SKS()> = (f, Uas()), (3.4)
where 1 9
Uas(z) = As [Ksias(z) — Ks(x)] — %KS(@

We will show that Uas(z) € A, so that (3.4) has a sense. Moreover, we will prove
that as [As| — 0 Was(z) converges in A, to zero. Because f € Aj, , this will imply
that the right-hand side of (3.4) tends to zero. Therefore in view of (3.4) we will
get (3.2).

To do this we find a circle C' with center at s and radius 71 where 0 < rg <
r1 < min(vy + Res, g — Res). Hence we may interchange differentiation on s with
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differentiation on x and invoke Cauchy’s integral formulas. Taking into account (1.3)
as a result we obtain

(0f ks, = L [ o) - 0] - (D LA ()
1 0

= 1 (5 89 Kopns(o) = Ko@) = 5= |57 K ()]

1 1 1\ ok 1 / 2 Ky ()
= - Ky (x)dt — — | ———dt
2miAs /c (t —s—As t-— s) () 2mi Jo (t— s)?

_As 2k Ky ()
~2mi Jo (t—s— As)(t — s)2

dt.

Hence via (1.1), (1.8) with the generalized Minkowski inequality and since
lt—s—As|>r1—rg>0,[t —s|=ry, |t| <|s|+m

we deduce

A 2k 1/p
oy (W) < 12315 T) /(/ K2 (x)z"P~ 1dx> \dt|

2T r1 — ro r%
2k 1/p
< |As | (s + r0) ( ”p_lda:)
7’1 — 7“0 (&)
= B, pklAs| — 0, |As| — 0,

where B, > 0 is a constant. Thus Was(x) converges in A, to zero.
In order to prove (3.3) we recall inequalities (1.8), (2.14). Then via (3.2) we write

IKL[f](s)| < Cmaxo<p<raypp(Ks(z))
< Qe (7/2=0)I7] ( /0 - K% (zsin 5)x”p1dx) w maxo<p<y| s
< Cfsppmax{l, s> }e= (/2200 s e Q.
Theorem 1 is proved. O

We are ready to prove now an inversion theorem for the transformation (3.1).
Indeed, we have

Theorem 2

Let f € A,,,, with 0 <v < 1. Then
li L L Ky(z)KCL d 3.5
Sy = lim s [ " ssintr — s @KL, il < v, (35)

where the convergence is understood in D'(R).

Proof. We observe that formula (3.5) means the following equality

(f,p) = lim <Z2 /“HOO ssin(m — e)sK4()ICL[f](s)ds, g0> (3.6)

Hn—100
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for every ¢ € D(Ry) having a support, let say, in the closed interval [a,b] C Ry. By
using our discussions above it is easily seen that the integral with respect to s in (3.6)
is absolutely convergent for each € > 0 and can be treated as a Riemann improper
integral. Furthermore with inequality (1.8) we show that the expression under the
limit sign is a regular distribution. Therefore it is equal to

i b 100
= [t [ ssinr — s L sy (3.7

Appealing to the Fubini theorem we change the order of integration in (3.7) and we
write it in the form

1 p+100

= ~ ssin(m —¢)sKL[f / v o(y) K, (y)dyds
p—ioco
7 ) pT

= — lim _ ssin(m —g)sKL[f](s )/ vy Lo(y) Ks(y)dyds. (3.8)
T T—00 Jy—iT a

Invoking (3.1) and the Riemann sums technique (cf. in [10, 12, 13]) it is not difficult
to prove that

iz /WT ssin(m — €)sKL[f](s) /b v ro(y) Ks(y)dyds = (f, Or),

p—iT a
where

i T b

Orcle) = [ ssin(r— )sKo(w) [y () Ko(y)dyds
T Ju—iT a

is an element of A,,. Meanwhile, we will show that Or.(x) — ¢.(x) in A,, as

T — oo, where ¢, () is defined by (2.7). Indeed, choosing 0 < 0 < § we employ (1.3),

(1.8) and the generalized Minkowski inequality. Hence we have

1 o vp—1
W (O1e — @) = — /0 x dx

™

/ ssin(r — e)sAY K, (z)
[Ims|>T

b p\ 1/p
< [y el K. () dyds )

1 o : vp—1 Yp
= (/0 K, (xsind)a"? d:c)

b
% [y o) Ky sind)dy

« / 15|25+ sin(m — &)s|e(TH2Oms] | g
Ims|>T

IN

< ngp/ |s|2k+le(25_6)|lms||ds| — 0,T — o0,
" J|Ims|>T
where Cs,,, > 0 is a constant. Thus combining with (3.8) we arrived at the equality

p+1i00
—/ ssin(m — e)sKL[f / vy L o(y) Ks(y)dyds = (f, p.). (3.9)
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To end the proof of Theorem 2 we pass to the limit through (3.9) when ¢ — 0+.
Hence by using Lemma 2 we get (3.6) and we establish the inversion formula (3.5).
Theorem 2 is proved. 0

By using Theorem 2 we can readily prove the uniqueness property for the
Kontorovich-Lebedev transformation (3.1).

Corollary 3

If CL[f](s) = F(s) and KL[g](s) = G(s), s € Q,, 0 < v < 1 and if F(s) =
G(s),s € Q, then f = g in the sense of equality in D'(R.).

Proof. Under conditions of the corollary f and g must assign the same value for each
¢ € D(R4). Thus by invoking Theorem 2 and equating f and ¢ in (3.5) we immediately
obtain (f, ¢) = (g, ), which proves Corollary 3. O

4. Dirichlet’s problem for a wedge

As an application let us consider Dirichlet’s problem for a wedge (r, 6) with the origin at
the apex and the sides of the wedge along the radial lines § = 0 and § = o (0 < a < 7).
The problem for the interior of this wedge is to find a function u(r, ) that satisfies the
following harmonic type equation

0%u

A:u:@,0<r<oo,0<0<a, (4.1)

where AY is the adjoint operator to A,

2
AI:r2—1—3rg—r28—. (4.2)

We assume that u(r, 0) is twice differentiable with respect to 6 in a sense of a conven-
tional derivative (cf. [13, Section 2.6]).

We impose the following boundary conditions:

L. As 0 — O+, u(r,0) — f(r) in A},,, 0 <v <1, p> 2 for any ¢ such that
o(r), ro(r) € Avp.

2. As 6 — a—, u(r,0) converges to zero under the same conditions.

This problem can be solved through an operational technique by the Kontorovich-
Lebedev transformation (3.1). Indeed, applying (3.1) to both sides of the equation (4.1)
and appealing to definitions of the adjoint operator and a conventional derivative we
arrive at the equality

2
(U, 0), A K()) — e {u(-,0), Ko()) = 0. (43)
Hence via (1.3) we obtain
82

s2KCL[u(-, 0)](s) KL[u(-,0)](s) = 0. (4.4)

o0
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Solving this differential equation we find
KLIu(,0)](s) = A(s)e™® + B(s)e™, (4.5)

where the unknown functions A(s), B(s) do not depend on #. To determine A and
B we first transform the boundary conditions. Indeed, as we have seen above the
modified Bessel function K(r) € A, , when |Res| < v. In order to show that for each
s,|Res| < v the function rK(r) belongs to A, p, 0 < v < 1 we use relation (2.16.33.2)
from [6, Vol. II] and reciprocal inversion formula like (1.11) for the Kontorovich-
Lebedev transform [7] to derive the integral representation

o0 inh Ki'r
rKs(r) :/ 7 sinh w7 K (r) dr, |Res| < 1.
0

cos s + coshmr

Hence with (1.1), (1.3), (1.8), (1.10) and the generalized Minkowski inequality we
deduce the estimate

U () < [

0 |cosms+ coshmr|

o0 Tsinh 7t

A p (Kir () dr

00 2k+1 g h
| e lKir Olpt

| cos s + cosh 7|

) 1/p
< (/ Kg(rsiné)r”p_ldr)
0

) T2k+1e(g+5)7'
X / dr < oo,
0o |cos(ms) + coshmr|
Res| <v<1,6€(0, %), k=0,1,2,.... Thus we get rK,(r) € Ay, and therefore
invoking (4.5), (3.1) we have
Jim KEfu,0)](s) = KLII(s) = A(s) + Bls), (1.6
elim KL[u(-,0))(s) = 0 = A(s)e®* 4+ B(s)e ", (4.7)
—a—

Combining with (4.5), (4.6), (4.7) and making elementary calculations we derive

_ sin (s(a — 6))

sin as

KLlu(-,0)](s) KL[f](s)- (4.8)

Consequently, invoking Theorem 2 we obtain as our possible solution

. i [HTico sin (s(a — 6))
u(r,0) = glir& — /H_ioo ssin(m —¢)s Ks(r)WICL[f](s)ds, (4.9)
where |u| < v < 1. It is easily seen that the integrand in (4.9) is analytic on the
strip €, (cf. (3.2)). Moreover, appealing to (1.8), (3.3) we get the uniform estimate
one€[0,7]and —v < pu<v

sin (s(a — 0))

sin as

ssin(m —¢e)s Kq(r) KL[f](s)| < const.|T|**Texp ((26 — 0)|7])

x K, (rosind), (4.10)
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where 7 =Ims, a >0, 0<2) <0 <a, 0<ryg<r < oo. Therefore one can pass to
the limit under the integral sign in (4.9) when ¢ — 0+. Hence we write our solution
in the form

i [Htico sin (s(a —

u(r,0) = — ssinms Kg(r)

0))
ol . . KL[f](s)ds. (4.11)
Our goal now is to prove that (4.11) is indeed a solution, which satisfies the differ-
ential equation (4.1) and the corresponding boundary conditions. In order to verify
that (4.11) is a solution of (4.1) we use (4.10) and the fact that the integrand in (4.11) is
analytic on the strip 2,. Consequently, the differentiations may be interchanged with
the integration. Moreover, by straightforward calculations we see that the function
sin (s(a — 6))

rsinas
satisfies (4.1). Thus u(r,#) is a solution of (4.1).

We turn now to the boundary conditions. First we show that r u(r,0) € A,, N
Li—yg(Ry) forany 0 < < o, ¢ =p/(p—1), 0 < v < 1. Indeed, from the uniform
convergence of the integral (4.11) with respect to r € Ry we see that r u(r,0) is a
smooth function. Moreover, invoking (1.1), (1.8), (1.10), (3.3) and the generalized
Minkowski inequality we obtain the estimate

[|A.[u(-, 0)]]|ew < const./ |7'\2‘”rl exp ((20 — 0)|7|) dr

—00

Ks(r)

9 1/w
X (/0 K, (rsin 5)7“5“’1dr> < 00, (4.12)

a>0, w>1,lul <& >0, for any 6, such that 0 < 20 < # < «, where § > 0 can be
chosen as a sufficiently small number. Thus, in particular ru(r,6) € A, ,NLi_, 4(R4)
with 0 < 0 < a, ¢q = p/(p—1), 0 < v < 1. Furthermore for any ¢ such that
o(r),ro(r) € A,y via (2.13) we write

(u(0). ) = (ul-0), ) = [~ rulr,O)p(r)dr
! /oo /#HOO ssinms KS(T)MKL[]C](S)C[S dr
0

T2 sin as
7 p+ioo
ﬁ/ ssmﬂ's/ o(r)Ks(r)dr
n—ioco
i Sn(sla =0)) sy, (4.13)
sin as

where the change of the order of integration in (4.13) is due to Fubini’s theorem, and
this fact can be easily motivated by (4.10), (4.12) with the Holder inequality. Precisely
we appeal to the estimate

p+ioco 00
/ |ssinms| /
H—1i00 0

< avuale) [ 17 exp (28~ O)lr) dr

—0o0

o 1/q
X </ Ki(r siné)r(ll’)qldr> < 00,
0

sin (s(a —

9))ICL[f](s)ds dr

sin acs
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where ¢ = z%’ a>0,0<d<6/2and |p| < min(l—wv,v). Hence in a similar manner
it is not difficult to see that the latter iterated integral in (4.13) converges uniformly
with respect to 6 on every interval 8 < 6 < a, where 3 > 2§ > 0. Therefore we may
take the limit under the integral sign in (4.13) as § — a— to get
0—a—
Thus the second boundary condition is verified.
In order to verify the first boundary condition it is sufficient to show that for any

¢ such that ¢(r),r o(r) € Ay,

li 5 0),-0) = (f,-p).

Jm (u(-,8),-9) = (f,-0)
Since the integrand in (4.11) is analytic on €, we can put p = 0 shifting the contour

of integration to the imaginary axis by using Cauchy’s theorem and the asymptotic
behavior of the integrand at infinity. Hence after elementary substitutions we find

Lo .o sinh(r(a—0))
u(r,0) = — / e Kinlr) DKL f i) (4.14)
Invoking the following relation
sinh (7(a — 0)) 70 _ro SIDhOT
——; = ¢€ —€ :
sinh ar sinh ar
we obtain
1 > T—0)T 1 > T—Q)T
ru(r,0) = = /_oo 7™ K, (rKL[f](iT)dT — =) Te(™=%)
sinh 61 )
X KiT(r)SinhaTlCL[f](zT)dT.
Thus
(w(s0)9) = [ rur0ypr)dr = = [ e KLif(ir) [T o) K (rdrar
0
1 Q=) Smh¢97' ) /"0 A
/ SSTKLIA) [ oK (rdrdr. (415)

In the same manner as in the proof of Theorem 2 we substitute in (4.15) the value of
KCL[f](iT) by formula (3.1) and we use Riemann sums and their limits to treat integrals
with respect to 7. Finally we arrive at the following relations

= | e ki | oK ydrar

= <f,12/ Tem=0)T Km()/ @(r)KiT(r)drdT>, (4.16)
7 ) s 0

1 [ sinh 01

- (m—a)T

ol Te sinhon'lCL (i) / o(r) K (r)drdr

_ < s / T pelrayr BT G /0 b go(r)KiT(r)drdT>. (4.17)

72 ) sinh ot
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Denoting by
1 o0

ay0) = = [ 07 Kily) [ o) Kinlr)arr,
™ J— 0

we invert the order of integration by Fubini’s theorem and we calculate the integral
with respect to 7 invoking the value of the kernel (2.11). As a result we deduce

ro(r)dr.

™

0 y sin 0 /oo K1((r? + 4% — 2ry cos 6)Y/2)
@1y, - 0 (7«2 + y2 — Qxy COS 9)1/2

It is not difficult to see that ¢;(y,#) is an element of A, , for each § € (0,a] and it
converges to yo(y) in A, , when § — 0+ (cf. (2.12)). Therefore from (4.16) we have

01—i>%1+<f7 @1(70» = <f7 S01>

and to satisfy the first boundary condition we have to show that

01_1)I(I)1+<f, 902('7 0)> = 07 (418)
where 1 h o
_ 1 o0 (r—a)7 SIDDOT /OO '
ea0.0) = = [ eI ) [ ) )

Indeed, invoking (4.10) we prove that ¢a(y, 6) is an element of A, , for each 6 € (0, o].
Moreover, since for each y > 0 and § € (0,5] N (0, «) (see (1.8))

265—a)r sinh 67

lp2(y, 0)| < Const.Ko(ysincS)/ |7 e dr

oo sinh ar
o0
x [ le(r) Kol sind)dr < o,
0
we take into account that Ko(ysind) € A, , and ¢ € A,, C L, ,(R4) to write the
estimate

sinh 67

I(f, ©a2(-,0))] < const.|(f, Ko(.sin5)>|/ |7|e20—e)T dr — 0, 0 — 0+

sinh at
due to the dominated convergence theorem. Thus we establish (4.18) and the first
boundary condition is satisfied.
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