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Abstract

A monomial curve is a curve parametrized by monomials. The degree of the
secant variety of a monomial curve is given in terms of the sequence of exponents
of the monomials defining the curve. Likewise, the degree of the join of two
monomial curves is given in terms of the two sequences of exponents.

1. Introduction

A monomial curve C is the image of an injective morphism f : P1 → Pr defined by
monomials. After ordering the monomials by ascending degree it is therefore given by

[s : t] �→ [sd : sd−a1ta1 : . . . : sd−ar−1tar−1 : td],

where a1 < a2 < . . . < ar = d are positive integers. So, this latter sequence completely
determines C. We define the first secant variety SecC to be the closure of the union of
lines that meet C in two distinct points. The first aim of this note is to compute the
degree of this secant variety as a subvariety of Pr. According to a well-known argument
using a general projection π : C → C ⊂ P2 this degree is given by the formula

degSecC =

(
d − 1

2

)
− δp − δq,

where δp and δq are the genus contributions of the cusps at p = π([1 : 0 . . . : 0]) and
q = π([0 : . . . : 0 : 1]) on C. Equivalently, 2δp and 2δq are the Milnor numbers of the
cusps at p and q. To compute δp and δq given C, we analyze the Puiseux expansions
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of C at the cusps, and apply an algorithm due to Chisini and Enriques, eventually
refined and given a closed form by Casas-Alvero.

Given two curves C and D in Pr we define their join Join(C,D) to be the closure
of the union of lines that meet C and D in two distinct points. We consider the join
of two monomial curves C and D: In the notation of the previous section we ask that
the two curves are defined by

C : [s : t] �→ [sdC : sdC−a1ta1 : . . . : sdC−ar−1tar−1 : tdC ],

where a1 < a2 < . . . < ar = dC are positive integers, and

D : [s : t] �→ [sdD : sdD−b1tb1 : . . . : sdD−br−1tbr−1 : tdD ],

where b1 < b2 < . . . < br = dD are positive integers. Again the two sequences

a1 < a2 < . . . < ar = dC , b1 < b2 < . . . < br = dD,

determine the two curves completely, and our second goal is to compute the degree of
the join of C and D as a subvariety of Pr. In this case the general projection of the
two curves to P2 gives the formula

degJoin(C,D) = dC · dD − Is(C,D),

where Is(C,D) is the sum of the intersection multiplicities in P2 of the two curves at
the images of intersection points between the two curves in Pr. Algorithms computing
the sum of intersection multiplicities Is(C,D) are given in Section 4.

The author thanks MSRI for excellent working conditions, Bernd Sturmfels for
his inspired interest in the problem, Eduardo Casas-Alvero for giving the solution a
nicer form and the referee for pointing out inaccuracies in an earlier version.

2. The multiplicity sequence of a plane curve singularity

A crucial ingredient in the two algorithms below is the multiplicity sequence of a plane
curve singularity. Given a point p in the plane and a sequence of blowups at simple
points (p = p0, p1, p2, ..., ps), such that all exceptional divisors lie over p, i.e. is mapped
to p by the natural map to the original plane, and such that the strict transform of the
curve is smooth. The multiplicities m0(C), (resp. mi(C), i > 0) of C at p (respectively
its strict transforms at pi), form the multiplicity sequence of C at p with respect to
the sequence of blowups. Equivalently, the multiplicity sequence coincides with the
sequence of intersection numbers of the strict transform of C with the exceptional
divisor of each blow up. The multiplicity sequence may contain 1’s, but these would
not appear in a blowup that provides a minimal resolution of the singularity. In the
latter case we say that the multiplicity sequence is minimal. Note that by the unicity
of a minimal resolution of a plane curve singularity, the minimal multiplicity sequence
is unique. Both minimal and nonminimal cases will however occur in our setting.
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We shall use the multiplicity sequence of plane singularities with given Puiseux
series. Consider the parameterized affine plane curve

C : t �→ (tm, tk1 + tk2 + · · · ).
This plane curve has a cusp at the origin, where t = 0. The multiplicity sequence
is computed from the sequence m, k1, k2, . . . as described in a result of Enriques and
Chisini [1, Theorem 8.4.12]. This algorithm is presented below, and the genus contri-
bution δ at t = 0 is subsequently computed from the multiplicity sequence.

Algorithm 2.1 (Multiplicity sequence)

Consider the strictly increasing sequence of positive integers

m < k1 < k2 < . . .

Step 1. The gcd-sequence and characteristic terms. (This step is not neces-

sary to compute the multiplicity sequence, but clarifies the role of the different terms

ki.) Let g0 = m and gi = gcd{m, k1, . . . , ki} for i > 0. The gi form the gcd-sequence

of m, k1, . . . , kr:

g0 ≥ g1 ≥ g2 ≥ g3 . . .

Clearly, in the gcd-sequence, gi = 1 for some i, since otherwise the parameteriza-

tion is not 1 : 1. The characteristic terms in the sequence k1, k2, . . . are the terms

ki1 , ..., kis

where i1 = min{i|gi < m}, i2 = min{i|gi < gi1} etc. Thus m = g0 > gi1 and

gi1 > ... > gis = 1.

In particular the number of characteristic terms is finite and bounded by the number

of prime factors in m.

Step 2. Given the sequence of positive integers

m < k1 < k2 < . . .

let κi = ki − ki−1 where k0 = 0 and i = 1, 2, .... We call

κ1, κ2, . . .

the difference sequence of the cusp. In our applications we will always have a finite

number of terms in this sequence, so we assume we have a difference sequence with s

terms.

Apply the Euclidean algorithm successively to the elements of the difference se-

quence: Let
κi = ei,1ri,1 + ri,2

ri,1 = ei,2ri,2 + ri,3

...
ri,w(i)−1 = ei,w(i)ri,w(i)
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with 0 ≤ ri,j+1 < ri,j and r1,1 = m, ri,1 = ri−1,w(i−1), i > 1. Note that

ri+1,1 = gi = gcd(m, k1, ..., ki).

The multiplicity sequence of the sequence {m < k1 < k2 < . . .} is ei,j times the

multiplicity ri,j , with 1 ≤ i ≤ s and 1 ≤ j ≤ w(i).
We write the multiplicity sequence in the order it is computed, and with repe-

titions in stead of the numbers ei,j . Note that the overall sequence is nonincreasing.

The genus contribution or δ-invariant of the sequence is given by

δ =
∑
i,j

ei,j

(
ri,j

2

)
.

This sum is given a closed form in terms of the original sequence and its gcd-
sequence by the following result due to Casas-Alvero:

Proposition 2.2

Given the sequence of positive integers

m < k1 < k2 < . . .

Let

g0 ≥ g1 ≥ g2 ≥ g3 . . .

be its gcd-sequence. Then the δ-invariant of the sequence is

δ =
1
2

⎛⎝∑
i≥1

ki(gi−1 − gi) − m + 1

⎞⎠ .

In particular, the δ-invariant depend only on the characteristic terms of the sequence

m, k1, k2, . . .

Proof. See [2, p. 194, ex. 5.6]. First, we may assume that the difference sequence is
finite, say with s terms. From the Euclidean algorithm applied to the elements of the
difference sequence we note that

w(i)∑
j=1

ei,jri,j = ki − ki−1 +
w(i)−1∑

j=1

(ri,j − ri,j+1)

= ki − ki−1 + ri,1 − ri,w(i) = ki − ki−1 + gi−1 − gi.

Secondly,

w(i)∑
j=1

ei,jr
2
i,j = (ki − ki−1)ri,1 +

w(i)−1∑
j=1

(ri,jri,j+1 − ri,j+1ri,j)

= (ki − ki−1)gi−1.
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Thus
s∑

i=1

w(i)∑
j=1

ei,jri,j = ks + g0 − gs,

s∑
i=1

w(i)∑
j=1

ei,jr
2
i,j =

s∑
i=1

(ki − ki−1)gi−1

and

2δ =
s∑

i=1

(ki − ki−1)gi−1 − ks − m + 1

=
s∑

i=1

ki(gi−1 − gi) − m + 1. �

3. The degree of the secant variety of a monomial curve

Let C ⊂ Pr be a monomial curve defined by the sequence of positive integers a1 <

a2 < . . . < ar = d as above. Consider the secant variety SecC of C. This is a
threefold, so its degree is counted by the intersection of this variety with a general
codimension three subspace, or equivalently by the number of ordinary double points of
the general projection π : C → P2. For a general projection the only other singularities
on C = π(C) are possible cusps at the image of the points π(p) and π(q) where
p = [1 : . . . : 0] and q = [0 : . . . : 1] in Pr. The formula for the arithmetic genus of a
plane curve of degree d and the computation of the genus contribution at these cups
provides a formula for the degree of SecC.

Proposition 3.1

Let C ⊂ Pr be a monomial curve defined by the sequence of positive integers

a1 < a2 < . . . < ar = d. Let bi = d − ar−i, for i = 1, ..., r − 1 and br = d. Let

gi = gcd(a1, ..., ai) and hi = gcd(b1, ..., bi), then

degSecC =

(
d − 1

2

)
− 1

2

(∑
i

ai+1(gi − gi+1) − a1 +
∑

i

bi+1(hi − hi+1) − b1

)
− 1.

Proof. The arithmetic genus p(C) for a curve C on a smooth surface S is given by the
adjunction formula [3] on the surface:

2p(C) − 2 = C · C + C · KS

where KS is the canonical divisor on S. If C has multiplicity m at a point q on S, and
S′ → S is the blowup of S at q, then the adjunction formula on S′ says

2p(C ′) − 2 = C ′ · C ′ + C ′ · KS′

= (C∗ − mE) · (C∗ − mE) + (C∗ − mE) · (KS + E)
= 2p(C) − 2 − m2 + m
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where E is the exceptional divisor and C∗ is the total transform and C ′ is the strict
transform of C (cf. [3, Chapter V]. Thus

p(C ′) = p(C) −
(

m

2

)
,

so
(m

2

)
is the genus contribution of a point of multiplicity m. After resolving all

singularities on C ⊂ P2 by a series of blow ups centered at singular points of C or
its strict transform, the arithmetic genus of the strict transform C ′ is 0 since it is a
rational curve. At the ordinary double points the difference between the arithmetic
genus of the curve and its strict transform after blowing up the point is

(2
2

)
= 1. The

points π(p) and π(q) are the only other singularities on C. The contribution δp is
by definition the difference between the arithmetic genus of C and a strict transform
that is smooth at the inverse image of π(p) and isomorphic to C outside the point
π(p). Likewise for δq. Since KP2

∼= −3L, where L is a line in the plane, the arithmetic
genus of C is given by 2p(C) − 2 = dC(dC − 3), i.e. p(C) =

(d−1
2

)
. Adding all genus

contributions we get the formula:

degSecC =

(
d − 1

2

)
− δp − δq,

where

δp =
∑(mi − 1

2

)
, δq =
∑(ni − 1

2

)

and {m1,m2, . . .} and {n1, n2, . . .} are the multiplicity sequences of C at π(p) and π(q)
respectively.

The Algorithm 2.1 computes these multiplicity sequences from the exponents of
the Puiseux expansion. By Proposition 2.2 it is enough for this algorithm to know the
characteristic terms of the Puiseux expansion. Therefore we need only to find these
terms of the Puiseux expansion of C ⊂ P2 at π(p) and π(q). The projection π : C → P2

is determined by the choice of three projective coordinates (X : Y : Z) in Pr, two of
which, say X, Y vanish at p, and two, say X, Z, vanish at q. In particular in terms of
the parameterization of C ⊂ P2 we may choose

X = ta1 + b13t
a3 + ... + b1(r−1)t

ar−1 ,

Y = ta2 + b23t
a3 + ... + b2(r−2)t

ar−2 + tar ,

Z = 1 + b32t
a2 + b33t

a3 + ... + b3(r−2)t
ar−2 .

The coefficients bij are independent and determine the projection. Clearly the charac-
teristic terms are determined by the projection, and therefore by the bij . The meaning
of “general” in general projection is that the characteristic terms are constant for an
open set of choices of coefficients bij . The following lemma says that a particularly
simple choice of coefficients belong to this open set, so that the characteristic terms
can be computed from this choice.
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Lemma 3.2

The characteristic terms in the Puiseux expansion of C at p for a general projection

coincides with the characteristic terms in the Puiseux expansion

x = ta1 , y = ta2 + ta3 + ... + tar .

Proof. The characteristic terms of the latter Puiseux expansion is precisely the char-
acteristic terms of the sequence a1, a2, . . . , ar as computed by the Algorithm 2.1. So
we compare these characteristic terms with those in a Puiseux expansion of a curve
parameterized by

X = ta1 + b13t
a3 + ... + b1(r−1)t

ar−1 , Y = ta2 + b23t
a3 + ... + b2(r−2)t

ar−2 + tar .

This Puiseux expansion is computed by a formal quotient X
Y and has the form

tβ1/α + c2t
β2/α + . . . cntβn/α . . .

For our purposes it can also be done step by step, by iterated reparameterizations
substituting t with t+utk for suitable u and k. We want to compare the characteristic
terms of the sequence α, β1, β2, ... with those of the sequence a1, a2, . . . , ar.

Since the characteristic terms are finite in number there is a largest one, say N0.
Clearly then the curve parameterized by

X = tα + bN tN + . . . , Y = tβ1 + b2t
β2 + ...,

with N ≥ N0 + α, has the same characteristic terms as C. So it is enough to find
a reparameterization of this kind. We do this step by step and reparameterize C by
substituting t with t + uta3−a1+1 for suitable u to cancel the coefficient of ta3 in X. In
the new parameterization we get:

X = ta1 + b′14t
a′
4 + ... + b′1rt

a′
r′ , Y = ta2 + b23t

a3 + ... + b2rt
ar + c1t

b1 + ...

where a′4 > a3, and all new exponents appearing are of the form ai+k(a3−a1) for some
positive integer k. Compare the greatest common divisors gi, i = 1, 2, ... of a1 and the
i lowest exponents of t occurring in Y , before and after the reparameterization. The
difference is a possible repetition of some terms, and some possible cancellations. We
similarly reparameterize until the second exponent of t in the X-coordinate is bigger
than N0 + a1 and conclude that the characteristic terms of sequence

a1, a2, . . . , ar

include the characteristic terms of the general projection C. But specialization can
only result in fewer characteristic terms, so the inclusion must be an equality. �

Since non-characteristic terms do not contribute to the δ-invariant the proposition
follows from Proposition 2.2. �
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Example 3.3 Consider the monomial curve C given by the sequence (0, 30, 45, 55, 78).
At p = [1 : 0], we may compute the δ-invariant from the Puiseux expansion with
exponents m = 30, (a3, a4, a5) = (45, 55, 78) The gcd-sequence is (30, 15, 5, 1) and the
δ-invariant is

δp =
1
2
(
45(30 − 15) + 55(15 − 5) + 78(5 − 1) − 30 + 1

)
= 754.

At q = [0 : 1] we compute the δ-invariant from the Puiseux expansion with exponents
m = 23 and (a3, a4, a5) = (33, 48, 78). Since m is prime and coprime to 33, the only
characteristic term is 33 with gcd-sequence (23, 1). The δ-invariant is

δq =
1
2
(
33(23 − 1) − 23 + 1

)
= 352.

The degree of the secant variety of C is

degSecC =

(
77
2

)
− δp − δq = 2926 − 754 − 352 = 1820.

4. The degree of the join of two monomial curves

Consider the join of two monomial curves C and D in Pr defined by

C : [s : t] �→ [sdC : sdC−a1ta1 : . . . : sdC−ar−1tar−1 : tdC ]

where a1 < a2 < . . . < ar = dC are positive integers, and

D : [s : t] �→ [sdD : sdD−b1tb1 : . . . : sdD−br−1tbr−1 : tdD ]

where b1 < b2 < . . . < br = dD are positive integers. The two sequences

a1 < a2 < . . . < ar = dC , b1 < b2 < . . . < br = dD

therefore determine the two curves completely. For the parameterizations to be 1 − 1
onto the image, we ask that the ai have no common factor, and likewise for the bi.
The join is a threefold, so its degree coincides with the number of lines meeting the
two curves in distinct points that also meet a given codimension 3 linear space L in Pr.
But this number equals the number of new intersection points obtained by projecting
the union of the two curves from L to a plane. Denote by πL the projection from L,
and let C = πL(C) and D = πL(D) be the images of C and D respectively. The total
intersection number

C · D = dC · dD

by Bezout’s theorem, so to get the degree we have to subtract the intersection multi-
plicity at the points of πL(C ∩ D). In our special situation there certainly are points
in C ∩ D:

{p = [1 : 0 . . . : 0], q = [0 : · · · : 0 : 1], u = [1 : . . . : 1]} ⊂ C ∩ D.

There may be more:
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Lemma 4.1

Let pij = aibj − ajbi 1 ≤ i < j ≤ r, and let g = gcd{pij)|1 ≤ i < j ≤ r},
then C and D intersect in exactly g points beside p and q, and the intersection in

these g points is transversal. For a general plane projection πL the total intersection

multiplicity of C and D at the points πL(C ∩ D \ {p, q}) is g.

Proof. The intersection points C ∩ D are, besides p and q, precisely the solutions
(t1, t2) to the equations

tai
1 = tbi

2 i = 1, . . . , r.

To find these we first consider the equations of the absolute values. Since ti �= 0,
these are real positive numbers, so we may take logarithms and get a system of linear
equations

ai log(|t1|) = bi log(|t2|) i = 1, . . . , r.

Now,
gcd(a1, . . . , ar) = gcd(b1, . . . , br) = 1

and ai is different from bi for some i, so there is at least one nonzero pij . The corre-
sponding pair of homogeneous equations of logarithms has a unique solution, i.e. only
the zero-solution, in particular |t1| = |t2| = 1.

Therefore we may write t1 = exp(2πix) = e2πix and t2 = exp(2πiy) = e2πiy, and
the equations translate into the linear conditions

aix − biy ∈ Z i = 1, . . . , r.

Again, one of the pij must be non-zero, and xpij and ypij are integers. In fact, since
g = gcd{pij)|1 ≤ i < j ≤ r}, the real numbers xg and yg must be integers. Therefore
aixg−biyg is an integer divisible by g, so we set X = xg and Y = yg and have reduced
the above equations to the modular equations

AiX − BiY ≡ 0 (g) i = 1, . . . , r,

where
Ai ≡ ai (g) and Bi ≡ bi (g).

If Ai ≡ 0 (g), then
pij ≡ BiAj ≡ 0 (g), j �= i.

Let gi = gcd(bi, g), then
g/gi|aj j = 1, ..., r.

But gcd(a1, . . . , ar) = 1, so g/gi = 1 and g|bi.
By symmetry we get

Ai ≡ 0 (g) ifonlyif Bi ≡ 0 (g).

Since gcd(a1, . . . , ar) = 1 there is an integral combination of these equations on
the form: X ≡ dY (g), for some d. The above argument applies again to show that
d is nonzero. Now, any of the pairs (Xα, Yα) = (−dα, α) α = 1, . . . , g is a solution to
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this equation. Since all equations are proportional modulo g these are the solutions to
all r equations. Consequently, the pairs(

exp
(2πiXα

g

)
, exp
(2πiYα

g

))
, α = 1, ..., g

are the solutions of the original equations. For transversality, we need to check that
the tangent directions of the two curves at intersection points are distinct. At the
intersection points the absolute value of each coordinate is 1, so taking the absolute
value of the tangent directions at these points we get (1, a1, ..., ar) and (1, b1, ..., br).
But these are clearly distinct by assumption, so transversality follows. Thus at every
point of intersection the two tangents span a plane. A general codimension 3 subspace
L ⊂ Pr does not intersect any of these planes, so the intersections remain transversal
after the projection πL to a plane. At each point of πL(C ∩D \ {p, q}) the intersection
multiplicity is 1, so they add up to g for the g points. �

For the points πL(p) and πL(q) the intersection multiplicity is at least two, since
the two curves have the same tangent(cone) at those points. In fact, since the curves are
unibranched, there is a unique tangent direction at the point, i.e. if they are singular
they have a cusp there. The intersection multiplicity at these points is determined by
a procedure similar to the one given in the previous section. More precisely consider
say the point πL(p). Blow it up and let p1 be the common intersection point of the
strict transforms of the two curves on the exceptional divisor. There is a unique such
intersection point since the two curves are unibranched and the tangents to C and D

at πL(p) coincide. Now blow up in the point p1. If the strict transforms meet on the
new exceptional divisor, then denote it by p2 and blow up in this point. Continue,
until the strict transforms do not intersect on the exceptional divisor. Thus we get
a finite sequence p0 = πL(p), p1, . . . , pk, and together with it the multiplicities of the
strict transforms of the two curves at each pi. We denote these multiplicity sequences
by m0(C), . . . , mk(C) and m0(D), . . . , mk(D). The intersection multiplicity between
the two curves at the point πL(p) is

IπL(p)(C,D) =
k∑

i=0

mi(C)mi(D).

The multiplicity sequences m0(C), . . . , mk(C) and m0(D), . . . , mk(D) are decreas-
ing and similar to the multiplicity sequences constructed in the previous section. There
are however a main difference in that the we need to consider nonminimal multiplicity
sequences, i.e. sequences that contain 1’s since these terms contribute to the inter-
section multiplicity, while they do not contribute to the δ-invariant. Because of the
unibranch property these 1’s will only be appear at the end of the sequences though.

The problem is how to compute these sequences from sequences a1, ..., ar and
b1, ..., br of the curves C and D. In this case the non-characteristic terms are as
important as the characteristic ones, since the intersection point of the strict transforms
with the exceptional divisor is crucial. Some special cases may illustrate the issue:
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Example 4.2 Consider monomial curves C : (1, 2, 3, 4) and D : (1, 2, 3, 5). Then
the two curves separate over πL(p) after four blowups and the multiplicity sequences
are mi(C) : 1, 1, 1, 1 and mi(D) : 1, 1, 1, 1. The intersection multiplicity at πL(p) is
1 + 1 + 1 + 1 = 4.

Example 4.3 The monomial curves C : (1, 2, 3, 4) and D : (2, 4, 6, 9) separate after
four blowups starting at πL(p), the multiplicity sequences are mi(C) : 1, 1, 1, 1 and
mi(D) : 2, 2, 2, 2. The intersection multiplicity at πL(p) is 2 + 2 + 2 + 2 = 8.

Example 4.4 For C : (1, 2, 3, 4) and D : (b0, b1, b2, b3) where b0 > 1 and b1 �= 2b0, then
the strict transforms over πL(p) separate after two blowups and the multiplicities that
contribute to the intersection multiplicity are mi(C) : 1, 1 and mi(D) : b0, min{(b1 −
b0), b0}. The intersection multiplicity at πL(p) is min{b1, 2b0}.

With these examples in mind we formulate the algorithm computing the degree
of the join.

Algorithm 4.5 (Intersection multiplicity algorithm I)

Given two monomial curves C and D defined by the sequences of positive integers

a1 < a2 < . . . < ar = dC , b1 < b2 < . . . < br = dD

respectively, and assume that for some j ≥ 1 bi ≥ ai for i < j while bj > aj . The

following two steps computes the intersection multiplicity of the general projection π

of the two curves to a plane in the point π([1 : 0 : ... : 0]).

Step 1. Let α = b1/a1. If α is not an integer, then set k = 0, otherwise let

k = max {i|bi = αai}

If k ≥ 2, let m1,m2, . . . , ms be the multiplicity sequence, the outcome of Step 2

of the Algorithm 2.1, of the sequence (a1, a2, . . . , ak), and set

δk = α(m2
1 + · · · + m2

s).

If k < 2, set δk = 0.

Step 2. If k < 2, apply Step 2 of the Algorithm 2.1 to the sequences (a1, a2) and

(b1, b2), with outcome

(e1, r1), (e2, r2), ..., (em, rm) and (e′1, r
′
1), ..., (e

′
n, r′n)

respectively.

If k ≥ 2, let g = gcd(a1, ..., ak), and apply the multiplicity algorithm in Section 2.1

to the sequences (g, ak+1 − ak) and (gα, bk+1 − bk), with outcome

(e1, r1), (e2, r2), ..., (em, rm) and (e′1, r
′
1, ..., (e

′
n, r′n)

respectively.
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Let l = max {j|ei = e′i, i = 1, . . . , j} and let

ε =
l∑
j

ej · rjr
′
j + e′l+1rl+1r

′
l+1 + rl+1r

′
l+2,

if e′l+1 < el+1 and

ε =
l∑
j

ej · rjr
′
j + el+1rl+1r

′
l+1 + rl+2r

′
l+1,

if el+1 < e′l+1.

Proposition 4.6

The intersection multiplicity between the curves π(C) and π(D) at π([1 : 0... : 0])
is

I(C,D) = δk + ε.

Proof. To start we project C and D into the plane and may choose coordinates such
that π(C) and π(D) have the parameterizations

π(C) : x = ta1 + c1,3t
a3 + ... + c1,rt

ar , y = ta2 + c2,3t
a3 + ... + c2,rt

ar

and
π(D) : x = tb1 + c1,3t

b3 + ... + c1,rt
br , y = tb2 + c2,3t

b3 + ... + c2,rt
br .

By assumption a1 < a2 and b1 < b2, so both curves are tangent along the x-axis. Now,
we blow up the plane in the origin. The strict transforms of these curves on the blowup
intersect the exceptional curve in the x-chart (with coordinates (x, xy)). In this chart
the strict transforms π(C)′ and π(D)′ have local parameterizations:

π(C)′ : x = ta1 + c1,3t
a3 + ... + c1,rt

ar , y
= ta2−a1 + c2,3t

a3−a1 + ... + c2,rt
ar−a1 − c1,3t

a2+a3−2a1 + . . .

and
π(D)′ : x = tb1 + c1,3t

b3 + ... + c1,rt
br , y = tb2−b1

+c2,3t
b3−b1 + ... + c2,rt

br−b1 − c1,3t
b2+b3−2b1 + . . .

The tangent at the origin is y = 0 if a1 < a2 − a1, it is x = 0 if a1 − a2 < a1 and
it is x = y if a1 = a2 − a1.

Notice, that the terms of order less than ak − a1 and bk − b1 respectively, have
the same coefficients and differ only in the exponent by the factor α. Therefore, if
k > 0 the two curves π(C)′ and π(D)′ have the same tangent direction at the origin,
and their strict transform on the blow up in the origin intersect. Proceeding we need
to know after how many blowups the strict transforms does not intersect, and keep
track of the multiplicities of the two strict transforms up to that point. Computing
the number of blowups needed to separate the two curves, comes down to keeping
track of first terms of the parametrizations of the strict transforms after successive
blowups. The tangent direction decides the parametrization of the strict transform: If
the tangent direction is y = 0 then the strict transform is parametrized by x, y

x , if the
tangent direction is x = 0, then the strict transform is parametrized by x

y , y, and if the
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tangent direction is x = y, then the strict transform is parametrized by x, y−x
x . Now,

the multiplicities of the strict transforms at the origin form the multiplicity sequence
obtained by Step 2 of the Algorithm 2.1, but keeping track of the tangent directions
at each point, we actually also control the intersection between the two curves. The
change from y = 0 to x = 0 of tangent direction correspond to going from (i, j) to
(i, j + 1) in the Euclidean algorithm, while the third kind of tangent corresponds to
going from (i, w(i)) to (i+1,1) or to non-characteristic terms. In this algorithm, as
long as i ≤ k, the leading terms of the parametrizations differ only by a factor of tα.
So the corresponding tangent directions coincide. Assume first k ≥ 2. If i = k + 1 and
j = 1 we have parametrizations tg + ..., tak+1−ak + ... and tαg + ..., tbk+1−bk + ... To see
when these two curves separate, we apply again the Euclidean algorithm to the pairs
(g, ak+1 − ak) and (gα, bk+1 − bk) and get

ak+1 − ak = e1r1(= g) + r2 . . . rm = emrm+1

and
bk+1 − bk = e′1r

′
1(= αg) + r′2 . . . r′n = e′nr′n+1.

So here we compare the coefficients ei and e′i. The curves split after

e1 + e2 + ... + el + min{el+1, e
′
l+1} + 1

blowups if ei = e′i for i ≤ l, while el+1, �= e′l+1}. In fact, the above argument says
that after e1 + e2 + ...+ el +min{el+1, e

′
l+1} blowups, the tangent directions of the two

strict transforms still coincides, while after one more blowup they do not, and after
two more blowups the two strict transforms separate.

If k < 2 the number s of blowups needed to separate the two curves is determined
by the initial pairs of exponents (a1, a2) and (b1, b2) and the above procedure starting
with these pairs in stead of (g, ak+1 − ak) and (gα, bk+1 − bk) clearly determines s. �

The intersection multiplicity algorithm may be shortened.

Lemma 4.7

Let (g, h) and (g′, h′) be pairs of integers and consider the Euclidean algorithm
applied to each pair:

h = e1r1 + r2 . . . rm = emrm+1

and
h′ = e′1r

′
1 + r′2 . . . r′n = e′nr′n+1

where r1 = g and r′1 = g′. Let l = max {j|ei = e′i, i = 1, . . . , j} and set

ε =

{∑l
j ej · rjr

′
j + e′l+1rl+1r

′
l+1 + rl+1r

′
l+2 if e′l+1 < el+1∑l

j ej · rjr
′
j + el+1rl+1r

′
l+1 + rl+2r

′
l+1 if el+1 < e′l+1.

(4.1)

Then

ε =

{
gh′ if l is even and e′l+1 < el+1, or l is odd and e′l+1 > el+1

g′h if l is odd and e′l+1 < el+1, or l is even and e′l+1 > el+1.
(4.2)
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Proof. Rewrite the sum
∑l

j ej · rjr
′
j using the identity (ri−1 − ri+1)r′i = eirir

′
i or

(r′i−1 − r′i+1)ri = e′ir′iri from the Euclidean algorithm. �

Algorithm 4.8 (Intersection multiplicity II)

Given two monomial curves C and D defined by the sequences of positive integers

A : a1 < a2 < . . . < ar = dC , B : b1 < b2 < . . . < br = dD

respectively. Let α = b1/a1. If α is not an integer, then set k = 0, otherwise let

k = max {i|bi = αai}.

If k < 2, consider the Euclidean algorithm applied to the pairs (a1, a2) and (b1, b2),
with factors and residues

(e1, r1(= a1)), (e2, r2), ..., (em, rm) and (e′1, r
′
1(= b1)), ..., (e′n, r′n)

respectively. Let l = max {j|ei = e′i, i = 1, . . . , j}.
Set

ε =

{
a1b2 if l is even and e′l+1 < el+1 or l is odd and el+1 < e′l+1

a2b1 if l is even and e′l+1 > el+1 or l is odd and el+1 > e′l+1.
(4.3)

If k ≥ 2, let

g1 = a1, gi = gcd{a1, ..., ai} i = 2, . . . , k

and consider the Euclidean algorithm applied to the pairs (gk, ak+1−ak) and (αgk, bk+1−
bk), with factors and residues

(e1, r1(= gk)), (e2, r2), ..., (em, rm) and (e′1, r
′
1(= αgk)), ..., (e′n, r′n)

respectively. Let l = max{j|ei = e′i, i = 1, . . . , j}.
Set

ε =

{
gk(bk+1 − bk) if l is even and e′l+1 < el+1 or l is odd and e′l+1 > el+1

αgk(ak+1 − ak) if l is even and e′l+1 > el+1 or l is odd and el+1 > e′l+1.
(4.4)

Then the intersection multiplicity of the general plane projection of the two curves
C and D, given by the sequences A and B respectively, at the image of p = [1 : 0... : 0]
is

I(A,B) =

{
ε if k < 2
α(
∑k−1

i=2 ai(gi−1 − gi) + akgk−1) + ε if k ≥ 2.
(4.5)

Proof. The proof follows the argument of [2, p. 194, ex. 5.6] applied to the Algo-
rithm 4.5. According to Proposition 4.6 the intersection multiplicity at π([1 : 0... : 0])
is

I(C,D) = α(m2
1 + · · · + m2

s) + ε,
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where m1, . . . , ms is the multiplicity sequence of the sequence {a1 < ... < ak}. The
sum

s∑
i=1

αm2
i = α

s∑
i=1

m2
i

may now be computed as in the proof of Proposition 2.2, i.e.

α
s∑

i=1

m2
i = αa2g1 + α

k−1∑
i=2

ai+1 − ai)gi = α
( k−1∑

i=1

(ai+1(gi − gi+1) + akgk−1

)
.

For the residual contribution ε we apply the Lemma 4.7. So the intersection multiplicity
I(C,D) coincides with I(A,B). �

Using 4.8 to compute I(A,B) for a pair of sequences A and B we conclude:

Proposition 4.9

Given two monomial curves C and D defined by the sequences of positive integers

A : a1 < a2 < . . . < ar = dC , B : b1 < b2 < . . . < br = dD

respectively. Set

A′ : ar − ar−1 < ar − ar−2 < . . . < ar − a1 < dC ,
B′ : br − br−1 < br − br−2 < . . . < br − b1 < dD,

and let g = gcd{aibj − ajbi|1 ≤ i < j ≤ r}. Then the degree of the join of C and D is

degJoin(C,D) = dC · dD − I(A,B) − I(A′, B′) − g.

References

1. E. Brieskorn and H. Knörrer, Plane Algebraic Curves, Birkhäuser, Verlag, Basel, 1986.
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