COLLECTANEA MATHEMATICA

Editors

Joan Cerdà (Managing Editor) Rosa M^a Miró-Roig Javier Soria

Scientific Committee

Luis A. Caffarelli Ciro Ciliberto Simon K. Donaldson Yves Félix Gerhard Frey Ronald L. Graham Lars Inge Hedberg Craig Huneke Nigel J. Kalton Rafael de la Llave Paul Malliavin **David Nualart** Jesús M. Sanz-Serna Bernd Sturmfels Xavier Tolsa Manuel Valdivia Guido Weiss

Volume LVI Issue 3(2005)

EDITORS

Joan Cerdà (Managing Editor) Dept. Mat. Apl. i Anàlisi Universitat de Barcelona 08071 Barcelona, SPAIN

Rosa M. Miró-Roig Dept. Àlgebra i Geometria Universitat de Barcelona 08071 Barcelona, SPAIN

Javier Soria

Dept. Mat. Apl. i Anàlisi Universitat de Barcelona 08071 Barcelona, SPAIN

SCIENTIFIC COMMITTEE

Lars Inge Hedberg

Department of Mathematics Linköping Universitet S-581 83 Linköping, SWEDEN

Jesús M. Sanz-Serna

Dpto. Mat. Apl. Computación Universidad de Valladolid 47005 Valladolid, SPAIN

Ciro Ciliberto

Luis A. Caffarelli

University of Texas

Austin, TX 78712, USA

Dipartimento di Matematica Università di Roma II 00133 Roma, ITALY

Department of Mathematics

Craig Huneke

Department of Mathematics University of Kansas Lawrence, Kansas 66045, USA

Bernd Sturmfels

Department of Mathematics University of California Berkeley, Calif. 94720, USA

Simon K. Donaldson

Mathematics Department Huxley Building, Imp. College London, SW7 2BZ, UK

Nigel J. Kalton

Department of Mathematics University of Missouri Columbia, MO 65211, USA

Xavier Tolsa

Departament de Matemàtiques Universitat Autònoma de Barcelona 08193 Bellaterra (Barcelona), SPAIN

Yves Félix

Département de Mathématiques Université Catholique de Louvain 1348 Louvain-la-Neuve, BELGIUM

Rafael de la Llave

Department of Mathematics University of Texas Austin, TX 78712, USA

Manuel Valdivia

Facultad de Matemáticas Universidad de Valencia 46100 Burjasot, SPAIN

Gerhard Frey

Inst. Exper. Mathematik U. Gesamthochschule Essen D-45326 Essen, GERMANY

Paul Malliavin

10 rue de Saint Louis L'Ile, F-75004 **FRANCE**

Guido Weiss

Department of Mathematics Washington University St. Louis, MO 63130, USA

Ronald L. Graham

Dpt. Comp. Sc. Engineering University California San Diego La Jolla, CA 92093-0114, USA

David Nualart

Departament d'Estadística Universitat de Barcelona 08071 Barcelona, SPAIN

Orbifold principal bundles on an elliptic fibration and parabolic principal bundles on a Riemann surface, II

Indranil Biswas

School of Mathematics, Tata Institute of Fundamental Research Homi Bhabha Road, Mumbai 400005, India

E-mail: indranil@math.tifr.res.in

Received August 29, 2004. Revised February 21, 2005

Abstract

In [6], orbifold G—bundles on a certain class of elliptic fibrations over a smooth complex projective curve X were related to parabolic G—bundles over X. In this continuation of [6] we define and investigate holomorphic connections on an orbifold G—bundle over an elliptic fibration.

1. Introduction

Let X be a connected smooth projective curve defined over the field \mathbb{C} of complex numbers. Fix a finite subset $\{p_1, \dots, p_h\} \subset X$, and to each point p_i in this subset assign a positive integer m_i . Fix an elliptic curve $C := \mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau)$. Given these, in [6] we constructed an elliptic fibration

$$f: Z \longrightarrow X$$

such that C acts on \mathbb{Z} with X as the quotient. This action is free on the complement $f^{-1}(\{p_1,\dots,p_h\})^c$ and for each point $z\in f^{-1}(p_i)$ the isotropy subgroup is $\mathbb{Z}/m_i\mathbb{Z}\subset C$. In other words, $f^{-1}(p_i)_{\mathrm{red}}=C/(\mathbb{Z}/m_i\mathbb{Z})$. Here $\mathbb{Z}/m_i\mathbb{Z}$ is realized as a subgroup of C by sending any $n\in\mathbb{Z}$ to n/m_i .

Let G be any connected reductive linear algebraic group defined over \mathbb{C} . Following [6], we call a principal G-bundle E_G over Z equipped with a lift of the action of C

Keywords: Orbifold bundle, ramified bundle, elliptic fibration.

MSC2000: 14F05, 14L30.

to the total space of E_G , such that the action of C on E_G commutes with the action of G on E_G , to be an orbifold G-bundle. It was shown in [6] that there is a natural bijective correspondence between orbifold G-bundles over Z and parabolic G-bundles over X with $\{p_1, \dots, p_h\}$ as the parabolic divisor.

Let E_G be an orbifold G-bundle over Z. We will call a holomorphic connection ∇ on E_G to be an orbifold connection if the action of C on E_G preserves the connection form ∇ and the orbits in E_G , for the action C on E_G , are the horizontal lifts of the orbits in Z for the action C on Z (the details are in Section 3). We show that the Einstein-Hermitian connection on a polystable orbifold G-bundle is a flat orbifold connection provided the group G is simple (Lemma 4.2).

Take any proper parabolic subgroup $P \subset G$, where G is a simple group. Take any polystable orbifold G-bundle E_G over Z. Let ∇ be the flat orbifold connection on the orbifold G-bundle E_G given by the (unique) Einstein-Hermitian connection on it. In Section 4 we investigate the connection on the associated fiber bundle E_G/P induced by ∇ and give applications to the geometric properties of some naturally occurring line bundles over E_G/P (see Theorem 4.3 and Proposition 4.4).

In [4], parabolic principal bundles over a curve were identified with what were called in [4] as ramified principal bundles. In [7], connections on ramified principal bundles were investigated.

2. Preliminaries

We begin by recalling some notation from [6]. Let $\Lambda := \mathbb{Z} + \mathbb{Z}\tau \subset \mathbb{C}$ be a lattice; the imaginary part of $\tau \in \mathbb{C}$ is nonzero. The elliptic curve \mathbb{C}/Λ defined over \mathbb{C} will be denoted by C. Let X be a compact connected Riemann surface. Fix

$$S := \{p_1, \cdots, p_h\} \subset X$$

h distinct points of X. To each point $p_i \in S$, $i \in [1, h]$, we assign a positive integer m_i .

Given these datum, there is an elliptic fibration

$$(1) f: Z \longrightarrow X$$

which is smooth over the complement $X \setminus S$ (see [6, Section 2]). The elliptic curve C acts on Z and the action is transitive on any reduced fiber of f. Furthermore, for any point $x \in X \setminus S$ the action of C on $f^{-1}(x)$ is free, and for any point $p_i \in S$, the isotropy subgroup for any point of the reduced fiber $f^{-1}(x)_{\text{red}}$ is $\mathbb{Z}/m_i\mathbb{Z} \subset \mathbb{C}/\Lambda = C$ (the details are in [6, Section 2]). Let

$$\phi: C \longrightarrow \operatorname{Aut}(Z)$$

be the homomorphism defined by the action of C on Z. Here $\mathbb{Z}/m_i\mathbb{Z}$ is realized as a subgroup of \mathbb{C}/Λ by sending any $n \in \mathbb{Z}$ to n/m_i .

Let E be an algebraic vector bundle over the surface Z in (1). By a lift of the action of C on Z to E as vector bundle automorphisms we mean an algebraic action of C on the total space of E

$$\hat{\phi}: C \times E \longrightarrow E$$

such that for any point $t \in C$, the automorphism of the total space of E that sends any $v \in E$ to $\widehat{\phi}(t,v)$ is an isomorphism of the vector bundle E with the pulled back bundle $\phi(-t)^*E$, where ϕ is the homomorphism in (2).

An algebraic vector bundle E over Z equipped with a lift of the action of C on Z to E as vector bundle automorphisms is called an *orbifold vector bundle over* Z (see [6, Definition 2.1]).

Consider the parabolic vector bundles over X with S as the parabolic divisor and such that all the parabolic weights at any point $p_i \in S$ are integral multiples of $1/m_i$, where $\{m_i\}$ are the fixed integers associated to the points of S. There is a natural bijective correspondence between such parabolic vector bundles over X and the orbifold vector bundles over Z [6, Theorem 4.4].

Let G be a connected reductive linear algebraic group defined over the field \mathbb{C} of complex numbers. An *orbifold* G-bundle over Z is a holomorphic principal G-bundle E_G over Z equipped with a lift of the action of C on Z to E_G . This means that C acts holomorphically on E_G satisfying the following two conditions:

- (1) the projection of E_G to Z commutes with the actions of C on E_G and Z, and
- (2) the actions of G and C on E_G commute.

In [3], a parabolic G-bundle over X with S as the parabolic divisor was defined as a functor, satisfying certain conditions, from the category of finite dimensional complex left G-modules to the category of parabolic vector bundles over X with S as the parabolic divisor (see [3, Definition 2.5]). We recall that a more general version of [6, Theorem 4.4] says that there is a bijective correspondence between the following two collections:

- (1) All orbifold G-bundles E_G over Z.
- (2) All parabolic G-bundles \mathcal{F} on X with S as the parabolic divisor such that for any left G-module V, the parabolic vector bundle $\mathcal{F}(E_*)(V)$ with parabolic structure over S has the property that for each point $p_i \in S$, all the parabolic weights of $\mathcal{F}(E_*)(V)$ at p_i are integral multiples of $1/m_i$.

(See [6, Theorem 5.1] for the details.)

In [4] it was shown that a parabolic G-bundle is same as a ramified G-bundle. We will briefly recall the definition of a ramified G-bundle.

A ramified G-bundle over X ramified over S is a triple (Q, ψ, f) , where

- (i) Q is a smooth complex variety of complex dimension $1 + \dim_{\mathbb{C}} G$,
- (ii) $\psi: Q \longrightarrow X$ is a surjective algebraic map, and
- (iii) $f: Q \times G \longrightarrow Q$ is an algebraic action of the algebraic group G on the variety Q such that
 - (1) the composition $\psi \circ f$ coincides with $\psi \circ q_1$, where $q_1: Q \times G \longrightarrow Q$ is the projection to the first factor,
 - (2) the projection ψ is smooth over $\psi^{-1}(X \setminus S)$,

- (3) for each point $x \in X$, the action of G on the reduced fiber $\psi^{-1}(x)_{\text{red}}$ is transitive, and for each point $x \in X \setminus S$, the action of G on $\psi^{-1}(x)$ is free (the second condition implies that $\psi^{-1}(x) = \psi^{-1}(x)_{\text{red}}$ for any $x \in X \setminus S$), and
- (4) for each closed point $z \in \psi^{-1}(S)$, the isotropy subgroup $G_z \subset G$ at z, for the action of G on Q, is a finite cyclic group, and furthermore, the induced action of the cyclic group G_z on the quotient line $T_zQ/T_z\psi^{-1}(S)_{red}$ is faithful.

Let $\mathcal{F}(E_*)$ be a functor from the category of left G-modules to the category of parabolic vector bundles defining a parabolic G-bundle over X (see [3] for the details). Let E'_G be the ramified G-bundle over X, ramified over S, associated to $\mathcal{F}(E_*)$ by the bijective correspondence constructed in [4, Theorem 3.7] between parabolic G-bundles and ramified G-bundles. The following two conditions are equivalent:

Condition A For any left G-module V, the parabolic vector bundle $\mathcal{F}(E_*)(V)$ with parabolic structure over S has the property that for each point $p_i \in S$, all the parabolic weights of $\mathcal{F}(E_*)(V)$ at p_i are integral multiples of $1/m_i$.

Condition B The ramified G-bundle E'_G over X, ramified over S, has the property that for each point $z \in \psi^{-1}(p_i)_{\text{red}}$, where $p_i \in S$, the order of the isotropy subgroup $G_z \subset G$ is a submultiple of m_i .

That the above two conditions are equivalent is an immediate consequence of the construction of the bijective correspondence done in [4, Theorem 3.7].

So, on the one hand from [4, Theorem 3.7] we have a bijective correspondence between the parabolic G-bundles over X satisfying the above Condition A and the ramified G-bundles over X satisfying the above Condition B. On the other hand, from [6] we have a bijective correspondence between the orbifold G-bundles over Z and the parabolic G-bundles over X satisfying Condition A. Combining these two we get a bijective correspondence between the orbifold G-bundles over Z and the ramified G-bundles over X satisfying Condition B. This resulting bijective correspondence is easy to describe, as shown in the following theorem.

Theorem 2.1

Given an orbifold G-bundle E_G over Z, the corresponding ramified G-bundle over X is the quotient space E_G/C for the action of the elliptic curve C on E_G . Conversely, given a ramified G-bundle E'_G over X satisfying the above Condition B, there is a unique orbifold G-bundle E_G over Z such that $E'_G = E_G/C$.

If E_G is an orbifold G-bundle over Z then it is easy to check that the quotient space E_G/C is a ramified G-bundle that satisfies the Condition B. The converse is a straight-forward consequence of the constructions of the two bijective correspondences in [6] and [4].

3. Connection on orbifold bundles

Let G be a connected reductive linear algebraic group defined over \mathbb{C} . Let \mathfrak{g} denote the Lie algebra of G. Let E_G be an orbifold G-bundle over the surface Z in (1). We recall that a usual *connection* on E_G is a \mathfrak{g} -valued smooth (1,0)-form on the total space of E_G such that

- (1) the \mathfrak{g} -valued differential form is G-equivariant with G acting on \mathfrak{g} as conjugations, and
- (2) for each point $z \in Z$, the restriction of the differential form to the fiber $(E_G)_z$ coincides with the Maurer-Cartan form on $(E_G)_z$ (see the remark below).

The connection is called holomorphic if the (1,0)-form defining the connection is holomorphic.

Remark 3.1 If a Lie group H acts transitively on a manifold M such that for any point $y \in M$ the isotropy group is a finite subgroup of H, then the action of H on M identifies the Lie algebra \mathfrak{h} of H with the tangent space T_yM for each point $y \in M$. This identification of \mathfrak{h} with T_yM , $y \in M$, defines a \mathfrak{h} -valued smooth one-form on M. To see this first recall that a \mathfrak{h} -valued one-form on M gives a homomorphism from T_yM to \mathfrak{h} for all $y \in M$. The \mathfrak{h} -valued smooth one-form on M defined by the action of H on M sends T_yM to \mathfrak{h} using the above identification of T_yM with \mathfrak{h} . This \mathfrak{h} -valued differential form on M is called the Maurer-Cartan form.

Let $\operatorname{ad}(E_G)$ be the adjoint bundle of E_G . So $\operatorname{ad}(E_G)$ is the quotient $(E_G \times \mathfrak{g})/G$, where the action of G is defined as follows: the action of any $\alpha \in G$ sends any point $(z,v) \in E_G \times \mathfrak{g}$ to $(z\alpha,\operatorname{Ad}(\alpha^{-1})v)$. The adjoint bundle $\operatorname{ad}(E_G)$ is a holomorphic vector bundle over Z with its fibers having the structure of a Lie algebra isomorphic to \mathfrak{g} . Let

$$(4) 0 \longrightarrow \operatorname{ad}(E_G) \longrightarrow \operatorname{At}(E_G) \stackrel{\gamma}{\longrightarrow} TZ \longrightarrow 0$$

be the Atiyah exact sequence over Z, where TZ is the holomorphic tangent bundle of Z. We recall that for any analytic open subset $U \subset Z$, the space of all holomorphic sections of the Atiyah bundle $\operatorname{At}(E_G)$ over U is the space of all G-invariant holomorphic vector fields on $E_G|_U$; the homomorphism γ is obtained from the differential of the projection of E_G to Z (see [2] for the details). A connection on E_G is same as a C^{∞} splitting of the exact sequence (4) of holomorphic vector bundles. A C^{∞} splitting of (4) is a C^{∞} homomorphism of vector bundles

$$\delta: TZ \longrightarrow At(E_G)$$

such that $\gamma \circ \delta = \mathrm{Id}_{TZ}$, where γ is as in (4)

If δ in (5) is a holomorphic homomorphism, then the splitting δ is said to be holomorphic. A splitting of (4) gives a holomorphic connection on E_G if and only if the splitting is holomorphic [2].

The action of the elliptic curve C on the orbifold G—bundle E_G gives a holomorphic line subbundle

$$\mathcal{L} \subset TE_G$$

of the holomorphic tangent bundle of E_G . At each point $z \in E_G$, the fiber $\mathcal{L}_z \subset T_z E_G$ is the tangent space to the orbit, for the action of C on E_G , passing through z. Note that the line bundle \mathcal{L} is canonically identified with the trivial line bundle over E_G with fiber $T_0C = \mathbb{C}$ (the isotropy subgroup at z for the action of C on E_G is a finite group and hence T_0C gives a line in T_zE_G).

DEFINITION 3.2 An orbifold connection on E_G is a usual connection ∇ on the G-bundle E_G such that

- (1) the action of the elliptic curve C on E_G preserves the \mathfrak{g} -valued differential form ∇ on E_G , and
- (2) $\nabla(\mathcal{L}) = 0$, where \mathcal{L} is the line subbundle defined in (6).

From the construction of the Atiyah bundle $At(E_G)$ it follows immediately that the line subbundle \mathcal{L} in (6) gives a holomorphic line subbundle

$$\mathcal{L}' \subset \operatorname{At}(E_G)$$

 (\mathcal{L}') is generated by the sheaf of G-invariant vector fields on E_G that lie in \mathcal{L}). The line bundle \mathcal{L}' is canonically identified with the trivial line bundle over Z with fiber $T_0C = \mathbb{C}$.

Exactly as shown in (6), the action of C on Z gives a holomorphic line subbundle

$$\mathcal{L}'' \subset TZ$$

of the holomorphic tangent bundle of Z. At each point $z \in Z$, the fiber $\mathcal{L}''_z \subset T_z Z$ is the tangent space to the orbit, for the action of C on Z, passing through z. Just like \mathcal{L} , the line bundle \mathcal{L}'' is canonically identified with the trivial line bundle over Z with fiber $T_0C = \mathbb{C}$. So we have a commutative diagram

(9)
$$\begin{array}{cccc}
0 & 0 \\
\downarrow & \downarrow \\
\mathcal{L}' & = \mathcal{L}'' \\
\downarrow & \downarrow \\
0 & \longrightarrow \operatorname{ad}(E_G) & \longrightarrow \operatorname{At}(E_G) & \xrightarrow{\gamma} & TZ & \longrightarrow 0
\end{array}$$

obtained from (4), where \mathcal{L}' and \mathcal{L}'' are constructed in (7) and (8) respectively; the isomorphism in (9) of \mathcal{L}' with \mathcal{L}'' is obtained from the fact that both the line bundles are identified with the trivial line bundle over Z with fiber $T_0C = \mathbb{C}$.

Note that the action of C on E_G induces an action of C on the exact sequence (4); each vector bundle in (4) is an orbifold vector bundle and all the homomorphisms commute with the actions of C.

The proof of the following proposition is straight–forward.

Proposition 3.3

A connection on E_G defined by a splitting δ (as in (5)) of the Atiyah exact sequence (4) gives an orbifold connection if and only if the following two conditions hold:

- (1) the homomorphism δ commutes with the actions of C on TZ and At(E_G),
- (2) the restriction of the homomorphism δ to $\mathcal{L}'' \subset TZ$ is the identity map $\mathcal{L}' = \mathcal{L}''$ in (9).

The first (respectively, second) condition in the above proposition is equivalent to the first (respectively, second) condition in Definition 3.2.

A holomorphic orbifold connection on E_G is an orbifold connection on E_G such that the underlying connection is holomorphic.

Lemma 3.4

The curvature of a holomorphic orbifold connection defined on an orbifold G-bundle E_G over Z vanishes identically.

Proof. Let E_G be an orbifold G-bundle E_G over Z and ∇ a holomorphic connection on E_G . The curvature $K(\nabla) = \nabla^2 = \nabla \circ \nabla$ is a holomorphic section of $\Omega_Z^2 \otimes \operatorname{ad}(E_G)$.

Now, if ∇ is an orbifold connection, then for any point $z \in Z$ and any tangent vector $v \in T_z Z$ in the orbit, passing through z for the action of C on Z, we have

$$i_{\nu}K(\nabla)_{z} = 0$$

where $i_v K(\nabla)_z \in (\Omega^1_Z \otimes \operatorname{ad}(E_G))_z$ is the contraction of the two-form $K(\nabla)_z$ by the tangent vector v. Since the complex dimension of Z is two, this immediately implies that $K(\nabla)_z = 0$. This completes the proof of the Lemma. \square

The following proposition says that an orbifold connection on E_G descends to a \mathfrak{g} -valued one-form on the quotient $E_G' := E_G/C$ which is a ramified G-bundle over X (see Theorem 2.1).

Proposition 3.5

Let ∇ be a \mathfrak{g} -valued holomorphic one-form on E_G defining a holomorphic orbifold connection on an orbifold G-bundle E_G over Z. Then there is unique \mathfrak{g} -valued holomorphic one-form ∇' on $E'_G := E_G/C$ such that $q^*\nabla' = \nabla$, where $q: E_G \longrightarrow E'_G$ is the quotient map. This holomorphic form ∇' on E'_G satisfies the following two conditions:

- (1) the \mathfrak{g} -valued differential form ∇' is G-equivariant with G acting on \mathfrak{g} as conjugations (the action of G on E_G induces an action of G on E_G'), and
- (2) for any point $x \in X$, the restriction of ∇' to the reduced fiber of E'_G over x coincides with the Maurer-Cartan form on the fiber (see Remark 3.1).

Conversely, let θ' be any \mathfrak{g} -valued holomorphic one-form on $E'_G := E_G/C$ satisfying the above two conditions. Then the \mathfrak{g} -valued holomorphic one-form $q^*\theta'$ on E_G defines a holomorphic orbifold connection on E_G .

Proof. Let ∇ be a \mathfrak{g} -valued holomorphic one-form on the total space of E_G defining a holomorphic orbifold connection on E_G . Since the differential form ∇ is C-invariant

and it vanishes along the orbits for the action of C on E_G , it is straight-forward to deduce that there is a smooth \mathfrak{g} -valued (1,0)-form ∇' on $E'_G := E_G/C$ such that $q^*\nabla' = \nabla$, where q is the projection of E_G to E'_G . Note that for the map $f: \mathbb{D} \longrightarrow \mathbb{D}$ defined by $z \longmapsto z^n$, where $\mathbb{D} \subset \mathbb{C}$ is the unit disk, any holomorphic one-form on \mathbb{D} invariant under the action of the Galois group $\mathbb{Z}/n\mathbb{Z} = \operatorname{Gal}(f)$ must be of the form $g(z)z^{n-1}\mathrm{d}z$, where g(z) is a holomorphic function on \mathbb{D} invariant under the action of the Galois group $\operatorname{Gal}(f) = \mathbb{Z}/n\mathbb{Z}$. Since invariant holomorphic forms descends for a quotient by a finite group, there is a \mathfrak{g} -valued (1,0)-form ∇' on E'_G with $q^*\nabla' = \nabla$. See [5, page 525, Lemma 4.11] for the details of the construction.

As the differential form ∇ is holomorphic, the form ∇' is also holomorphic. Since the form ∇ is G-equivariant, it follows that ∇' is also G-equivariant. For any point $z \in Z$, the restriction of ∇ to the fiber $(E_G)_z$ coincides with the Maurer-Cartan form on $(E_G)_z$. Therefore, for any point $x \in X$, the restriction of ∇' to the reduced fiber of E'_G over the point x coincides with the Maurer-Cartan form on the reduced fiber.

For the converse direction, if θ' is a \mathfrak{g} -valued holomorphic one-form on $E'_G := E_G/C$ satisfying the two conditions in the statement of the proposition, then the \mathfrak{g} -valued holomorphic one-form $q^*\theta'$ on E_G is clearly G-equivariant and it coincides with the Maurer-Cartan form on any fiber of E_G . Furthermore, since $q^*\theta'$ is pulled back from E_G/C , it vanishes on any orbit for the action of C on E_G . Therefore, $q^*\theta'$ is a holomorphic orbifold connection on E_G . This completes the proof of the Proposition. \square

DEFINITION 3.6 Any holomorphic \mathfrak{g} -valued one-form on the total space of a ramified G-bundle E'_G satisfying the two conditions in Proposition 3.5 will be called a holomorphic connection on E'_G .

See [7] for properties of connections on ramified bundles.

4. Connections on a ramified bundle

We will first show that the second Chern class of the adjoint vector bundle of an orbifold G-bundle vanishes.

Proposition 4.1

Let E_G be an orbifold G-bundle over Z. Then $c_2(\operatorname{ad}(E_G)) \in H^4(Z, \mathbb{Q})$ vanishes.

Proof. Consider the orbifold vector bundle $\operatorname{ad}(E_G)$ over Z (the action of the elliptic curve C on E_G induces an action of C on $\operatorname{ad}(E_G)$). The orbifold vector bundle $\operatorname{ad}(E_G)$ defines a parabolic vector bundle over X with S as the parabolic divisor [6, Theorem 4.4]. Let W denote the holomorphic vector bundle over X underlying the parabolic vector bundle corresponding to $\operatorname{ad}(E_G)$.

Let K(Z) denote the Grothendieck's K-group of coherent sheaves on Z. In K(Z) we have

(10)
$$f^*(W \otimes_{\mathcal{O}_X} \mathcal{O}_X(S)) = \operatorname{ad}(E_G) + \sum_{i=1}^h V_i \in K(Z),$$

where f is the projection in (1) and V_i is a vector bundle defined over the reduced curve $f^{-1}(p_i)_{\text{red}} \subset Z$ (see [6, page 301, (19), (20)]). Here we consider a vector bundle E_0 defined over a curve $D_0 \subset Z$ as an element of K(Z) by taking ι_*E_0 , where $\iota: D_0 \hookrightarrow Z$ is the inclusion map. Let L_i denote the restriction of the line bundle $\mathcal{O}_Z(f^{-1}(p_i)_{\text{red}})$ to the reduced divisor $f^{-1}(p_i)_{\text{red}}$. So by the Poincaré adjunction formula L_i is identified with the normal bundle of the smooth divisor $f^{-1}(p_i)_{\text{red}} \subset Z$. Each vector bundle V_i over $f^{-1}(p_i)_{\text{red}}$ in (10) can be taken to be of the form

$$(11) V_i = \bigoplus_{j=1}^{n_i} L_i^{\otimes m_j},$$

where n_i and m_j are arbitrary nonnegative integers (see [6, page 301, (19), (20)]).

If we fix a G-invariant nondegenerate bilinear form B on the Lie algebra \mathfrak{g} , then B gives a nondegenerate bilinear form on the fibers of the adjoint vector bundle $\operatorname{ad}(E_G)$. Therefore, $\operatorname{ad}(E_G)$ is isomorphic to $\operatorname{ad}(E_G)^*$, and in particular we have $c_1(\operatorname{ad}(E_G)) = 0$. Consequently,

$$(12) c_2(\operatorname{ad}(E_G)) = -\operatorname{ch}_2(\operatorname{ad}(E_G)),$$

where ch₂ is the second Chern character.

Since the Chern character is additive, from (10) we have

(13)
$$\operatorname{ch}_2(f^*(W \otimes_{\mathcal{O}_X} \mathcal{O}_X(S))) = \operatorname{ch}_2(\operatorname{ad}(E_G)) + \sum_{i=1}^h \operatorname{ch}_2(V_i).$$

Now, $\operatorname{ch}_2(f^*(W \otimes_{\mathcal{O}_X} \mathcal{O}_X(S))) = f^*\operatorname{ch}_2(W \otimes_{\mathcal{O}_X} \mathcal{O}_X(S)) = 0$ as X is a curve.

It is easy to see that the self-intersection number of the divisor $f^{-1}(p_i)_{\text{red}} \subset Z$ vanishes. Indeed, if $x \neq y$, then $f^{-1}(x) \cap f^{-1}(y) = \emptyset$, while the curve $f^{-1}(x)$ is homologous to $f^{-1}(y)$. Therefore, the self-intersection number of the fiber $f^{-1}(x) \subset Z$ vanishes for each point $x \in X$. The self-intersection number of $f^{-1}(p_i)$ is m_i^2 -times the self-intersection number of $f^{-1}(p_i)_{\text{red}}$. Therefore, the self-intersection number of the divisor $f^{-1}(p_i)_{\text{red}} \subset Z$ vanishes.

If D is a divisor on Z, then we have

$$\operatorname{ch}(\mathcal{O}_Z(D)) = 1 + [D] + D^2,$$

where $[D] \in H^2(Z, \mathbb{Q})$ is the cycle class of D and D^2 is the self-intersection number of D. We note that

$$L_i = \mathcal{O}_Z(f^{-1}(p_i)_{\mathrm{red}}) - \mathcal{O}_Z \in K(Z),$$

where $L_i \in K(Z)$ are as in (11). Therefore, from the above observation that the self-intersection number of the divisor $f^{-1}(p_i)_{\text{red}} \subset Z$ vanishes it follows immediately that $\text{ch}_2(L_i^{\otimes k}) = 0$ for all $k \geq 0$. Now from (11) it follows that $\text{ch}_2(V_i) = 0$ for all $i \in [1, h]$.

Consequently, from (13) we have

$$\operatorname{ch}_2(\operatorname{ad}(E_G)) = 0.$$

Therefore, from (12) we conclude that $c_2(\operatorname{ad}(E_G)) = 0$. This completes the proof of the Proposition. \square

From now onwards, we will assume the group G to be simple.

Let E'_G be a polystable ramified G-bundle over X satisfying Condition B in Section 2 (see [4, Definition 3.13] for the definition of a polystable ramified G-bundle). Therefore, the parabolic G-bundle corresponding to E'_G is polystable (follows from the combination of [4, Theorem 3.14] and [3, Theorem 4.3]). Since E'_G satisfies the Condition B, the parabolic G-bundle corresponding to E'_G satisfies the Condition A, and hence there is a corresponding orbifold G-bundle over Z (see Theorem 2.1). Let E_G be the orbifold G-bundle over Z corresponding to E'_G .

Since the parabolic G-bundle corresponding to the ramified G-bundle E'_G is polystable, we conclude that the orbifold G-bundle E_G is orbifold polystable [6, Proposition 4.1], and hence the underlying G-bundle E_G is polystable in the usual sense [6, Proposition 4.3]. Now [1, Theorem 0.1] says that E_G admits a unique Einstein-Hermitian connection.

We will briefly recall the definition of a Einstein-Hermitian connection on E_G (see [1] for the details). Fix any maximal compact subgroup $K(G) \subset G$. Let $\mathfrak{z}(\mathfrak{g}) \subset \mathfrak{g}$ be the center of the Lie algebra. Note that

$$\mathfrak{z}(\mathfrak{g}) \subset H^0(Z, \operatorname{ad}(E_G)).$$

Fix a Kähler form on Z. A connection ∇ on E_G is called a Einstein–Hermitian connection if there is a smooth reduction of structure group $E_{K(G)} \subset E_G$ of E_G to the subgroup $K(G) \subset G$ and a smooth connection $\nabla^{K(G)}$ on $E_{K(G)}$ such that following two conditions hold:

- (1) the connection on E_G induced by the connection $\nabla^{K(G)}$ on $E_{K(G)}$ coincides with ∇ , and
- (2) there is an element $c \in \mathfrak{z}(\mathfrak{g})$ such that the curvature $K(\nabla^{K(G)})$ of the connection $\nabla^{K(G)}$, which is a $\mathrm{ad}(E_{K(G)})$ -valued two-form over Z, satisfies the identity

$$\Lambda K(\nabla^{K(G)}) = c \in H^0(Z, \operatorname{ad}(E_G)),$$

where Λ is the adjoint of multiplication of differential forms by the Kähler form on Z.

Since G is simple and $c_2(\operatorname{ad}(E_G)) = 0$ (Proposition 4.1), the Einstein-Hermitian connection on E_G is flat (if the first and the second rational Chern classes of a vector bundle vanishes, then a Einstein-Hermitian connection on the vector bundle is flat [10, page 116, Corollary 4.13]).

Lemma 4.2

The Einstein–Hermitian connection on E_G is a flat holomorphic orbifold connection on the orbifold G-bundle E_G (see Definition 3.2).

Proof. Let ∇ denote the flat Einstein–Hermitian connection on E_G . From the uniqueness of the Einstein–Hermitian connection it follows that ∇ is preserved by the action

of C on E_G . Indeed, for any point $c \in C$, the action of c on E_G gives an automorphism of E_G over the automorphism of Z given by the action of c. This automorphism of E_G will be denoted by $\tau(c)$. Consider the pullback of the connection form ∇ on E_G by the automorphism $\tau(c)$. This pulled back differential form $\tau(c)^*\nabla$ is an Einstein–Hermitian connection on $\phi(c)^*E_G = E_G$, where ϕ is the homomorphism in (2). From the uniqueness of the Einstein–Hermitian connection we conclude that $\phi(c)^*\nabla$ coincides with ∇ . In other words, the action of C on E_G preserves ∇ . So ∇ satisfies the first condition in Definition 3.2.

Take any point $x \in X \setminus S$. Let $E_G|_{f^{-1}(x)}$ be the restriction of the G-bundle E_G to the fiber $f^{-1}(x) \subset Z$, where f is defined in (1). Since the action of C on the fiber $f^{-1}(x)$ is free and transitive, the action of C on $E_G|_{f^{-1}(x)}$ gives a trivialization of the G-bundle $E_G|_{f^{-1}(x)}$. If we fix a point $z \in f^{-1}(x)$, then any fiber $(E_G)_y$, $y \in f^{-1}(x)$, is naturally identified with $(E_G)_z$ using the action of C on $E_G|_{f^{-1}(x)}$.

Since ∇ is a flat Einstein–Hermitian connection, the restriction of ∇ to $E_G|_{f^{-1}(x)}$ gives a flat Einstein–Hermitian connection on the G-bundle $E_G|_{f^{-1}(x)}$. Since $E_G|_{f^{-1}(x)}$ is a trivial G-bundle, the trivial connection on it gives a flat Einstein–Hermitian connection. Now from the uniqueness of the Einstein–Hermitian connection on $E_G|_{f^{-1}(x)}$ it follows that the restriction of ∇ to $E_G|_{f^{-1}(x)}$ coincides with the connection on $E_G|_{f^{-1}(x)}$ given by its trivialization. Thus ∇ satisfies the second condition in Definition 3.2. This completes the proof of the Lemma. \square

Let

$$(14) E'_G = E_G/C$$

be the ramified G-bundle corresponding to the polystable orbifold G-bundle E_G (see Theorem 2.1). Since the Einstein-Hermitian connection ∇ on E_G is a flat orbifold connection (Lemma 4.2), it gives a holomorphic connection on E'_G (see Definition 3.6 and Proposition 3.5). Let ∇' be the holomorphic connection on E'_G given by the flat Einstein-Hermitian connection ∇ on E_G .

Fix a proper parabolic subgroup

$$P \subset G$$

of the simple linear algebraic group G defined over \mathbb{C} . So the quotient G/P is a complete variety. For any character λ we have the associated line bundle

(15)
$$L(\lambda) := (G \times \mathbb{C}_{\lambda})/P$$

over G/P; the action of P on $G \times \mathbb{C}_{\lambda}$ is defined as follows: any $p \in P$ sends any point $(g,c) \in G \times \mathbb{C}$ to $(gp,\lambda(p)^{-1}c)$.

Fix an antidominant character λ_0 of P such that the line bundle $L(\lambda_0)$ over G/P defined in (15) is ample. Let m be the least common multiple of the integers $\{m_1, \dots, m_h\}$. Set

$$\lambda := \lambda_0^{\otimes m}.$$

Consider the quotient space E'_G/P , where E'_G is the ramified G-bundle in (14), which is a complete variety. Let

(17)
$$E'_G(\lambda) = (E'_G \times \mathbb{C}_{\lambda})/P$$

be the quotient defined as follows: the action of any $p \in P$ sends any point $(z,c) \in E'_G \times \mathbb{C}$ to $(zp, \lambda(p)^{-1}c)$, where λ is the character of P defined in (16). Using the composition of maps

$$E'_G \times \mathbb{C}_{\lambda} \longrightarrow E'_G \longrightarrow E'_G/P$$

we obtain a projection of $E'_G(\lambda)$ (defined in (17)) to E'_G/P . We will show that $E'_G(\lambda)$ is an algebraic line bundle over the variety E'_G/P .

To show that first consider the quotient space E_G/P . Let

$$\xi(\lambda_0) := (E_G \times \mathbb{C}_{\lambda_0})/P$$

be the algebraic line bundle over E_G/P corresponding to the above character λ_0 of P (see (16)); the action of any $p \in P$ sends any point $(z, c) \in E_G \times \mathbb{C}$ to $(zp, \lambda_0(p)^{-1}c)$. Similarly, let

(18)
$$\xi(\lambda) := (E_G \times \mathbb{C}_{\lambda})/P$$

be the algebraic line bundle over E_G/P corresponding to the character λ of P defined in (16). From (16) we conclude that

(19)
$$\xi(\lambda) = \xi(\lambda_0)^{\otimes m}.$$

The action of the elliptic curve C on E_G induces an action of C on E_G/P . Also note that the action of C on E_G induces an action of C on the line bundle $\xi(\lambda_0)$ (take the diagonal action of C on $E_G \times \mathbb{C}$ with C acting trivially on \mathbb{C} ; this action descends to an action of C on the quotient space $\xi(\lambda_0) := (E_G \times \mathbb{C})/P$). Similarly, there is an induced action of C on the line bundle $\xi(\lambda)$. The projection from the total space of $\xi(\lambda_0)$ (respectively, $\xi(\lambda)$) to E_G/P commutes with the actions of C on E_G/P and $\xi(\lambda_0)$ (respectively, $\xi(\lambda)$). The order of the isotropy subgroup of any point $z \in Z$ for the action of C on Z is a submultiple of the integer m. Therefore, from (19) it follows immediately that the isotropy subgroup of any point $y \in (E_G/P)_z$ (for the action of C on E_G/P) acts trivially on the fiber $\xi(\lambda)_y$. This immediately implies that the quotient $\xi(\lambda)/C$ is an algebraic line bundle over $(E_G/P)/C$.

Clearly, $(E_G/P)/C = E'_G/P$, and the quotient space $\xi(\lambda)/C$ is identified with $E'_G(\lambda)$ defined in (17). Therefore, $E'_G(\lambda)$ is an algebraic line bundle over E'_G/P .

Theorem 4.3

The line bundle $E'_G(\lambda)$ over E'_G/P (defined in (17)) is numerically effective, but it is not an ample line bundle.

Proof. Fix a maximal compact subgroup $K(G) \subset G$ of the simple algebraic group G. As before, let ∇ denote the flat Einstein–Hermitian connection on the polystable orbifold G-bundle E_G over Z. Therefore, we have a C^{∞} reduction of structure group of E_G to the maximal compact subgroup $K(G) \subset G$. Let

$$(20) E_{K(G)} \subset E_G$$

be a C^{∞} reduction of structure group of E_G to the subgroup K(G) that supports a connection inducing the Einstein-Hermitian connection on E_G .

Set $K(P) := K(G) \cap P$. Note that the inclusion homomorphism $K(G) \hookrightarrow G$ induces an isomorphism of the quotient spaces

$$K(G)/K(P) = G/P$$
.

So we have $E_G/P = E_{K(G)}/K(P)$, where $E_{K(G)}$ is constructed in (20). Consider the character λ of P and the line bundle $\xi(\lambda)$ over E_G/P associated by it (see (16) and (18) for their definitions). The line bundle $\xi(\lambda)$ is identified with the line bundle $(E_{K(G)} \times \mathbb{C}_{\lambda})/K(P)$ over $E_{K(G)}/K(P)$; the quotient by K(P) is defined as before (the action of any $g \in K(P)$ sends any $(z,c) \in E_{K(G)} \times \mathbb{C}$ to $(zg,\lambda(g)^{-1}c)$).

Note that K(P) is a compact Lie group. In fact, K(P) is a maximal compact subgroup of a Levi factor of P. Since K(P) is compact, the character

$$\lambda: K(P) \longrightarrow \mathbb{C}^*$$

factors through the maximal compact subgroup $S^1 \subset \mathbb{C}^*$. Consequently, the associated line bundle $(E_{K(G)} \times \mathbb{C}_{\lambda})/K(P)$ over $E_{K(G)}/K(P)$ has a natural Hermitian structure induced by the standard Hermitian structure on \mathbb{C} .

Using the earlier mentioned identification of the line bundle $\xi(\lambda)$ with the line bundle $(E_{K(G)} \times \mathbb{C}_{\lambda})/K(P)$, the above Hermitian structure on $(E_{K(G)} \times \mathbb{C}_{\lambda})/K(P)$ gives a Hermitian structure on $\xi(\lambda)$. Therefore, $\xi(\lambda)$ is a holomorphic Hermitian line bundle over E_G/P .

Let $\nabla^{\xi(\lambda)}$ denote the Chern connection on the holomorphic Hermitian line bundle $\xi(\lambda)$. Therefore,

(21)
$$\omega := \frac{\sqrt{-1}}{2\pi} (\nabla^{\xi(\lambda)})^2 \in \Omega^{1,1}(E_G/P)$$

is the Chern form that represents the first Chern class of $\xi(\lambda)$, where $(\nabla^{\xi(\lambda)})^2$ is the curvature of the connection $\nabla^{\xi(\lambda)}$. We will show that the form ω is nonnegative and its kernel at each point is of dimension two. For a (1,1)-form β defined on a complex manifold Y, the kernel of β at a point $y \in Y$ is the kernel of the homomorphism $T_y^{1,0}Y \longrightarrow (T_y^{0,1}Y)^*$ that sends any holomorphic tangent vector $v \in T_y^{1,0}Y$ to the contraction of $\beta(y)$ by v.

Take any point $z \in Z$. Fix a connected contractible analytic open subset $U \subset Z$ containing the point z. Let

$$(22) q_z: U \longrightarrow z$$

be the projection map, and let $E_G^z := (E_G)_z$ be the G-bundle over the point z obtained by restricting E_G to z. Using the flat connection ∇ on E_G , the restriction $E_G|_U$ (to U) is canonically identified with $q_z^* E_G^z$ and the connection $\nabla|_U$ on $E_G|_U$ coincides with the natural connection on $q_z^* E_G^z$ (take parallel translations, for the flat connection ∇ , along paths in U based at z to identify any other fiber with the fiber $(E_G)_z$). Let

$$(23) f_z^0: E_G|_U \longrightarrow E_G^z$$

be the G-equivariant projection obtained this way.

Since G/P = K(G)/K(P), and the action of K(P) on $\mathbb C$ defined using λ preserves the standard Hermitian structure on $\mathbb C$, we conclude that the holomorphic line bundle $L(\lambda)$ over G/P (defined in (15)) is equipped with a natural Hermitian structure. The line bundle $L(\lambda)$ is ample by our assumption on λ . Since the curvature form of the Chern connection on $L(\lambda)$ is invariant under the action of K on G/P, and $L(\lambda)$ is ample, it follows that $\frac{\sqrt{-1}}{2\pi}$ -times the curvature of the Chern connection on $L(\lambda)$ is a positive form on G/P.

After fixing a point on the G-bundle $E_G^z:=(E_G)_z$ over z, the trivial G-bundle $G\times\{z\}$ over the point z gets identified with the G-bundle E_G^z . This way the holomorphic Hermitian line bundle $L(\lambda)$ over G/P gets identified with the holomorphic Hermitian line bundle $\xi(\lambda)|_{(E_G/P)_z}$. Therefore, we conclude that $\frac{\sqrt{-1}}{2\pi}$ -times the curvature of the Chern connection $\nabla^{\xi(\lambda)}|_{(E_G/P)_z}$ on $\xi(\lambda)|_{(E_G/P)_z}$ is a positive form on $(E_G/P)_z=(E_G)_z/P$.

Let $U' := E_G|_U \subset E_G$ be the open subset, where U is as in (22). Let $(E_G)_z$). Let

$$(24) f_z: E_G|_U/P = U'/P \longrightarrow E_G^z/P$$

be the projection obtained from the map f_z^0 in (23). The holomorphic Hermitian line bundle $\xi(\lambda)|_{U'/P}$ over $U'/P = (E_G|_U)/P$ is identified with the holomorphic Hermitian line bundle $f_z^*\xi(\lambda)|_{(E_G/P)_z}$, where f_z is the projection in (24). We already noted that $\frac{\sqrt{-1}}{2\pi}$ —times the curvature of the Chern connection on $\xi(\lambda)|_{(E_G/P)_z}$ is a positive form on $(E_G/P)_z$. Since the pullback of a positive form is a nonnegative form, we conclude that $\frac{\sqrt{-1}}{2\pi}$ —times the curvature of the Chern connection on $\xi(\lambda)|_{U'/P}$ is a nonnegative form. Since $\frac{\sqrt{-1}}{2\pi}$ —times the curvature of the Chern connection on $\xi(\lambda)$ is the form ω (see (21)), we conclude that the restriction to $E_G|_U/P$ of the differential form ω (defined in (21)) is a nonnegative form.

Furthermore, for any point $y \in E_G|_U/P$, the kernel of $\omega(y)$ is precisely the two dimension subspace of the holomorphic tangent space T_yE_G/P given by the horizontal subspace for the induced flat connection on the associated fiber bundle E_G/P ; the connection ∇ on the G-bundle E_G over Z induces a connection on any fiber bundle associated to E_G , in particular on E_G/P , the fiber bundle associated to E_G for the left translation action of G on G/P. Indeed, the horizontal subspace at $y \in E_G|_U/P$ is precisely the kernel of the differential $\mathrm{d}f_z(y): T_yE_G/P \longrightarrow T_{f_z(y)}E_G^z$, where f_z is defined in (24). The kernel of the pullback of a positive form coincides with the kernel of the differential.

Therefore, we conclude that the form ω is nonnegative. Furthermore, the kernel of ω coincides with the horizontal subbundle of the holomorphic tangent bundle TE_G/P . Let

(25)
$$q_C: E_G/P \longrightarrow E'_G/P = (E_G/P)/C$$

be the quotient map. We recall that the line bundle $E'_G(\lambda)$ over E'_G/P is, by its definition, the line bundle $\xi(\lambda)/C$. Therefore, the pulled back line bundle $q_C^*E'_G(\lambda)$ over E_G/P is canonically identified with $\xi(\lambda)$. Since ω (defined in (21)) is a nonnegative form, the line bundle $\xi(\lambda)$ over E_G/P is numerically effective. Since $\xi(\lambda) = q_C^*E'_G(\lambda)$, and the map q_C in (25) is surjective, we conclude that the line bundle $E'_G(\lambda) = \xi(\lambda)/C$ over E'_G/P is numerically effective [8, Proposition 2.3].

Set $d_0 = \dim_{\mathbb{C}} E'_G/P = \dim_{\mathbb{C}} E_G/P - 1$. Since $\xi(\lambda) = q_C^* E'_G(\lambda)$, where q_C is the projection in (25), we conclude that

(26)
$$c_1(\xi(\lambda))^{d_0} = q_C^* c_1(E_G'(\lambda))^{d_0} \in H^{2d_0}(E_G/P, \mathbb{Q}).$$

Since the closed form ω in (21) represents the first Chern class $c_1(\xi(\lambda))$, the cohomology class $c_1(\xi(\lambda))^{d_0}$ is represented by the differential form $\bigwedge^{d_0} \omega$.

We saw earlier that the kernel of ω coincides with the subbundle of rank two of the holomorphic tangent bundle TE_G/P given by the horizontal subbundle (for the connection on the associated fiber bundle E_G/P induced by ∇). Since $d_0 = \dim_{\mathbb{C}} E_G/P - 1$, this immediately implies that the differential form $\bigwedge^{d_0} \omega$ on E_G/P vanishes identically. Therefore, from (26) we have $q_C^*c_1(E_G'(\lambda))^{d_0} = 0$. Since the homomorphism

$$q_C^*: \mathbb{Q} = H^{2d_0}(E_G'/P, \mathbb{Q}) \longrightarrow H^{2d_0}(E_G/P, \mathbb{Q})$$

is injective, we now conclude that

$$0 = c_1(E'_G(\lambda))^{d_0} \in H^{2d_0}(E'_G/P, \mathbb{Q}) = \mathbb{Q}.$$

This implies that the line bundle $E'_G(\lambda)$ is not ample (the first Chern class of an ample line bundle is positive and hence the top exterior power of the first Chern class is a positive number). This completes the proof of the Theorem. \square

Let the polystable orbifold G-bundle E_G be such that the monodromy of the Einstein-Hermitian connection ∇ on E_G is dense in K(G). We recall that fixing a point $z \in Z$ and also fixing a point $y \in (E_G)_z$ in the fiber, the monodromy of a flat Hermitian connection on E_G gives a homomorphism

$$\rho: \pi_1(Z,z) \longrightarrow K(G)$$

which is constructed using parallel translations of y along paths in Z starting at z. The condition that the image $\rho(\pi_1(Z,z))$ is dense in K(G) does not depend on the choices of z and y. If the genus of the curve X is at least two, then the general polystable G-bundle satisfies the above condition that the monodromy of the Einstein-Hermitian connection on it is dense in K(G).

Proposition 4.4

The line bundle $E'_G(\lambda)$ over E'_G/P has the property that for any proper closed subvariety $Y \subseteq E'_G/P$, the restriction of $E'_G(\lambda)$ to Y is an ample line bundle.

Proof. In Theorem 4.3 we saw that the line bundle $E'_G(\lambda)$ over E'_G/P is numerically effective. Since $E'_G(\lambda)$ is numerically effective, for every closed subvariety $M \subset E'_G(\lambda)$ of (complex) dimension d we have

$$0 \le c_1(E'_G(\lambda))^d \cap [M] \in \mathbb{Z}$$

Using the Nakai–Moishezon criterion for ampleness (see [9, page 434, Theorem 5.1]), to prove that the restriction of $E'_G(\lambda)$ to any subvariety Y (as in the statement of the proposition) is ample it suffices to show that for any proper closed subvariety $M \subsetneq E'_G/P$ the inequality

$$(27) c_1(E'_G(\lambda))^d \cap [M] > 0$$

holds, where d is the (complex) dimension of M.

Since the Einstein-Hermitian connection ∇ on E_G is an orbifold connection (see Lemma 4.2), the Chern connection $\nabla^{\xi(\lambda)}$ (see (21)) on the line bundle $\xi(\lambda)$ over E_G/P descends to a Chern connection on the line bundle $E'_G(\lambda)$ over E'_G/P . The Hermitian structure on $\xi(\lambda)$ descends to a Hermitian structure on the line bundle $E'_G(\lambda)$ over E'_G/P . The descended Chern connection on $E'_G(\lambda)$ is the Chern connection for this descended Hermitian structure on $E'_G(\lambda)$. Let ∇'' denote the Chern connection on the line bundle $E'_G(\lambda)$ over E'_G/P obtained from the connection $\nabla^{\xi(\lambda)}$ on $\xi(\lambda)$.

Since the form ω in (21) is nonnegative (see the proof of Theorem 4.3), the form $\frac{\sqrt{-1}}{2\pi}(\nabla'')^2$ on E'_G/P is nonnegative, where $(\nabla'')^2$ is the curvature of the connection ∇'' . Indeed, this follows immediately from the fact that

$$q_C^* \frac{\sqrt{-1}}{2\pi} (\nabla'')^2 = \omega \,,$$

where q_C is the projection in (25). Therefore, for any proper closed subvariety $M \subsetneq E'_G/P$ of (complex) dimension d we have

$$\int_{M} \left(\frac{\sqrt{-1}}{2\pi} (\nabla'')^{2} \right)^{d} \geq 0,$$

and furthermore, $\int_M (\frac{\sqrt{-1}}{2\pi} (\nabla'')^2)^d = 0$ if and only if the pullback of the differential form $(\frac{\sqrt{-1}}{2\pi} (\nabla'')^2)^d$ to M vanishes identically.

Assume that (27) fails. Let $M \subseteq E'_G/P$ be a closed subvariety of complex dimension d such that $c_1(E'_G(\lambda))^d \cap [M] = 0$. Since

$$c_1(E'_G(\lambda))^d \cap [M] = \int_M \left(\frac{\sqrt{-1}}{2\pi} (\nabla'')^2\right)^d,$$

from the above observation we conclude that the pullback of the form $(\frac{\sqrt{-1}}{2\pi}(\nabla'')^2)^d$ to the subvariety M vanishes identically.

Let $y \in E_G/P$ be any point such that $q_C(y) \in M$, where q_C is the projection in (25). We have the differential of q_C

(28)
$$dq_C(y): T_y E_G/P \longrightarrow T_{q_C(y)} E'_G/P$$

between the holomorphic tangent spaces. The above observation that the pullback of the form $(\frac{\sqrt{-1}}{2\pi}(\nabla'')^2)^d$ to M vanishes identically implies that the subspace

$$T_{q_C(y)}M \subset T_{q_C(y)}E'_G/P$$

contains the image, by the homomorphism $dq_C(y)$ (defined in (28)), of the horizontal subspace in T_yE_G/P for the connection induced by ∇ on the associated fiber bundle E_G/P . The horizontal subspace of T_yE_G/P is of dimension two. Note that the kernel of $dq_C(y)$ is the direction along the orbit, passing through y, of the action of C on E_G/P . Therefore, the image, by the homomorphism $dq_C(y)$, of the horizontal subspace of T_yE_G/P is of dimension one.

Since $T_{q_C(y)}M$ contains the image of the horizontal subspace of T_yE_G/P , we conclude that the inverse image

$$\widehat{M} := q_C^{-1}(M) \subset E_G/P$$
,

which is a subvariety of E_G/P , has the property that for any point $y \in q_C^{-1}(M) = \widehat{M}$, the tangent subspace

$$T_y\widehat{M} \subset T_yE_G/P$$

contains the two dimensional horizontal subspace of $T_y E_G/P$. This immediately implies that the subvariety $\widehat{M} \subset E_G/P$ is left invariant by the connection, induced by ∇ , on the associated fiber bundle E_G/P .

Since the action of the maximal compact subgroup K(G) on G/P = K(G)/K(P) is transitive, if $\Gamma_0 \subset K(G)$ is a dense subgroup, then the action of Γ_0 on G/P does not preserve any proper closed subvariety of G/P. Since $\widehat{M} := q_C^{-1}(M) \subset E_G/P$ is left invariant by the connection, induced by ∇ , on the associated fiber bundle E_G/P , we conclude that the subvariety $\widehat{M} \cap (E_G/P)_z \subset (E_G/P)_z$ is left invariant by the monodromy of the connection on E_G/P . Now the above remark — that a dense subgroup of K(G) does not leave a proper closed subvariety of G/P invariant — combined with the assumption on E_G that the monodromy of ∇ is dense in K(G) together imply that $\widehat{M} \cap (E_G/P)_z = (E_G/P)_z$. Therefore, we conclude that $q_C^{-1}(M) = E_G/P$. Hence $M = E_G'/P$. This contradicts the assumption that $M \neq E_G'/P$. Consequently, (27) is valid. This completes the proof of the Proposition. \square

Acknowledgments. A part of the work was carried out during a visit to the Harish–Chandra Research Institute. The author thanks the Harish–Chandra Research Institute for its hospitality.

References

1. B. Anchouche and I. Biswas, Einstein-Hermitian connections on polystable principal bundles over a compact Kähler manifold, *Amer. J. Math.* **123** (2001), 207–228.

- 2. M.F. Atiyah, Complex analytic connections in fibre bundles, *Trans. Amer. Math. Soc.* **85** (1957), 181–207.
- 3. V. Balaji, I. Biswas, and D.S. Nagaraj, Principal bundles over projective manifolds with parabolic structure over a divisor, *Tôhoku Math. J.* **53** (2001), 337–367.
- 4. V. Balaji, I. Biswas, and D.S. Nagaraj, Ramified G-bundles as parabolic bundles, J. Ramanujam Math. Soc. **18** (2003), 123–138.
- 5. I. Biswas, Parabolic ample bundles, Math. Ann. 307 (1997), 511–529.
- 6. I. Biswas, Orbifold principal bundles on an elliptic fibration and parabolic principal bundles on a Riemann surface, *Collect. Math.* **54** (2003), 293–308.
- 7. I. Biswas, Connections on a parabolic principal bundle over a curve, Canadian J. Math. (to appear).
- 8. T. Fujita, Semipositive line bundles, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1983), 353–378.
- 9. R. Hartshorne, *Algebraic Geometry*, Graduate Texts in Mathematics, 52, Springer-Verlag, New York, 1977.
- 10. S. Kobayashi, *Differential Geometry of Complex Vector Bundles*, Publications of the Mathematical Society of Japan, 15, Iwanami Shoten Publishers and Princeton University Press, 1987.