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ABSTRACT

The tropical semiring (R, min, +) has enjoyed a recent renaissance, owing to
its connections to mathematical biology as well as optimization and algebraic
geometry. In this paper, we investigate the space of 1abeled n-point configura-
tions lying on atropical line in d-space, which is interpretable as the space of
n-species phylogenetic trees. Thisis equivalent to the space of n x d matrices
of tropical rank two, a simplicial complex. We prove that this smplicial com-
plex is shellable for dimension d = 3 and compute its homology in this case,
conjecturing that this complex is shellable in general. We also investigate the
space of d x n matrices of Barvinok rank two, a subcomplex directly related
to optimization, giving a complete description of this subcomplex in the case
d=3.

1. Introduction

In ordinary linear algebra over a field, the space of n labeled points on a line in R? is
a rather simple one. Consider this space of all d x n matrices whose columns lie on a
line. By translating the points (an action corresponding to adding a constant to each
row of the matrix), we can assume that the first point lies at the origin. Modulo this
translation, this space of matrices then has an obvious cone point, namely the zero
matrix. Removing this matrix yields the space of all matrices with first column zero
whose remaining n — 1 columns lie on a unique line. This line is chosen from the pencil
P?1 of lines through the origin, and each point lying on the line has one parameter in
R, so the space is just P41 x R* 1,

Keywords: Tropical linear algebra, rank two, Barvinok rank, phylogenetic mathematics, moduli
space.
MSC2000: 52B99.



2 DEVELIN

When one is not working over a field, the story is more complicated. Our goal is
to investigate the space of n points on a line in tropical d-space, i.e. d-space over the
tropical semiring (R, ®,®), where tropical addition @ is defined via a @ b = min(a, b),
and tropical multiplication ® is defined via ¢ ® b = a + b. This space, viewed as a

R¥™ as in the usual case, contains some trivial behavior (translation and

subset of
dilation); when this is removed, what remains is an interesting polytopal complex. We
will use tropical geometry to give a simple, pictorial decomposition of this complex.

Aside from being of intrinsic interest, this space also has connections to another
burgeoning area of mathematics, the study of phylogenetic trees. It is often convenient
to work in projective space rather than R?; indeed, all tropical geometry naturally
takes place in TP?~! := R?/(1,...,1)R. Here, the tropical Grassmannian Gr (2, d)
parametrizes the space of lines [10], which is equivalent to the space of phylogenetic
trees with d leaves [3], i.e. d present-day species.

If we consider the case of n points on a line in d-space, this represents the more
general case of having n species on a tree with d leaves. In real life, of course, the data
will not work out exactly, but by seeing how close the closest fit of all d-dimensional
trees is to the data given to us by the n species (namely the distance data between
them), we can come up with a likelihood estimate that the species fit into a tree with
few branches. For instance, suppose we are trying to resolve where a fossil species fits
into the ancestry tree of three present-day species. If it is related, the four species
should comprise a good approximation of four points on a line in three-space; if it is
far-flung, they should not (though of course there will be a line in four-space which
approximates them well.)

Furthermore, determining where on the tree it lies gives us an estimate of where
it lies as far as the history goes: is it the common ancestor of the three species? Is it a
direct ancestor of one of them but not the other two? Such questions can be resolved
by fitting a tree to the data.

Therefore, understanding the space of such n-point configurations is important
for the study of phylogenetic trees. The simplicial complex description we obtain will
dissect this space into simple chambers, making it easy to test the data against a
possible tree of best fit in each chamber.

Another motivation for the study of the tropical semiring comes from the field of
optimization. A matrix has Barvinok rank k if it can be expressed as the (tropical)
sum of k£ matrices of tropical rank one but not as the sum of k£ — 1 such matrices [5];
a d X n matrix has tropical rank one if all of its rows are tropical scalar multiples of
each other, which is the same thing as saying that its ij-th entry is equal to x; +y; for
SOIME X1, ...,2Ld,Y1,---,Yn. LThe name comes from work of Alexander Barvinok and his
collaborators, who showed that the traveling salesman problem can be solved in poly-
nomial time if the Barvinok rank of a matrix is fixed [1]. The smallest nontrivial case
is Barvinok rank two, where there exists a polynomial-time recognition algorithm [4].

The space of n points on a line turns out to be equivalent to the space of n x d
matrices of tropical rank two, where the tropical rank of a matrix is defined to be the
size of its largest tropically nonsingular square minor. In ordinary linear algebra, the
translated definitions of tropical rank and Barvinok rank are equivalent (both being
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equal to ordinary rank), but over the tropical semiring Barvinok rank can be much
bigger. However, tropical rank is always less than or equal to Barvinok rank [5],
meaning that the space of matrices with Barvinok rank two is a subset of the space
of matrices with tropical rank two, and indeed it is a subcomplex. We will investigate
this subcomplex along with the larger complex of matrices of tropical rank two. We
conjecture that the larger complex is shellable, proving this for d = 3; however, the
subcomplex of Barvinok rank-two matrices is decidedly not, and even has torsion in
its homology. We determine this homology for d = 3 and give a description of this
complex for general d.

2. Preliminaries and generalities

Throughout this paper, it will prove convenient to work in tropical projective space
TP¢! := R?/(1,...,1)R. Every tropically linear subspace L has the property that if
x is in L, then so is x + k(1,..., 1) for all k; this is even true for any algebraic variety.
For this reason, TP?~! is the natural setting for tropical geometry, since the tropical
geometry of R? is merely a cylinder over the tropical geometry of TP?~!. Whenever
we refer to homology in this paper, we mean reduced homology.

The rank of a matrix, and therefore of the point configuration consisting of its
columns, can be defined in many different ways. We review three relevant definitions
given in [5], which are all equivalent over a field but inequivalent over the tropical
semiring.

DEFINITION 2.1. The tropical rank of a matrix M is the largest r such that M has a
tropically nonsingular r X r minor. A square matrix is tropically singular if the tropical

@ ( @ Mia(i)) = minaesn< Z Mia(i))

€Sy i€n] i€[n]

determinant

achieves the indicated minimum twice.

The tropical rank of a matrix is equal to the dimension of the tropical convex hull
of its columns, defined to be the set of all tropical linear combinations of those columns,
i.e. the dimension of the image of the matrix. This image has lineality space (1,...,1),
and its image in tropical projective space is a polytopal complex. This definition of
rank is combinatorially nice, and is connected to the study of phylogenetic trees: n
points form a tree metric if and only if the negated distance matrix has tropical rank
two, in which case the tropical convex hull of the columns of this matrix is a realization
of the tree. Like ordinary polytopes, tropical convex hulls satisfy a Farkas lemma and
have a facet description. For more on tropical convex hulls, see ([6], [8]).

Another etymology for the tropical operations is as the image of the ordinary
operations on a power series ring K = k[[t]] under the degree map sending a power
series to its minimal exponent. This allows us to define linear subspaces as the tropical
vanishing sets of linear ideals, effecting the following definition.

DEFINITION 2.2. The Kapranov rank of a matrix M is the smallest r such that there
exists a linear ideal I C Klx1,...,zy] of codimension r such that each column of M
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is in the tropical vanishing set 7(I). A vector a € R" is in the tropical vanishing set
T (1) if for each f € I, the leading term of f with respect to the weight vector (1,a)
(i.e. weight 1 on t and weights a on the z;’s) is not a monomial.

The notion of Kapranov rank of course accompanies the study of linear subspaces.
The definition of tropical vanishing set is the natural one under the conception of the
tropical semiring as coming from this power series ring; another way to put it is that
the tropical vanishing set of an ideal is the image under the degree map of the ordinary
vanishing set of the ideal in K™. For more on tropical algebraic geometry and the study
of linear subspaces, see ([9], [10]).

Our final definition of rank arises naturally in the field of optimization.

DEFINITION 2.3. The Barvinok rank of a matrix M is the smallest r such that M is
the tropical sum of r tropically rank-one matrices. A matrix has tropical rank one if
its columns (equivalently, rows) are tropical scalar multiples of each other.

We will use the following more tractable reformulation of Barvinok rank.

Proposition 2.4 [5]

The Barvinok rank of a matrix M C R%*™ js the smallest r such that its columns
lie in the tropical convex hull of r points in TP,

Our goal is to investigate the space of n labeled points all lying on a line in TP,
These configurations correspond to d x n matrices of Kapranov rank two. There are
two reasons why this (rank two instead of rank one) is the natural definition of points
on a line. First of all, because of the projectivization, it is natural to investigate
point configurations in TP?~!, where everything has one smaller dimension. This is
essentially akin to reverse homogenization; if we have n points on an arbitrary affine
line in ordinary R%, in order to get them into a linear subspace one needs to add a
dimension. Another natural reason to investigate rank two matrices is that, with no
additive identity, there is no such thing as a rank-zero matrix. The structure of rank-
one matrices is uninteresting; with any of the three definitions of rank above, these
matrices are given by M;; = x; +y; for some choice of x;’s and y;’s. This is because in
tropical projective space, where all the geometry lives, these point configurations are
just n copies of the same point.

In the rank two case, we have the following result.

Proposition 2.5 [5]

The properties of having tropical rank two and Kapranov rank two are equivalent.
A matrix enjoying these properties has Barvinok rank at least two.

The set of matrices of Barvinok rank two therefore comprises a subset of the
matrices with tropical or Kapranov rank two. We will investigate this set, which is
relevant in the field of optimization, along with the larger set of matrices of tropical
or Kapranov rank two, which are n-point configurations on a tropical line in TP,

As for the computation of this set, one way to do it is via Grobner basis methods.
The definition of tropical rank above means that we can look at the Grébner fans for
all 3 x 3 determinants of a d x n matrix of indeterminates; for each, we then pick
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out the subcomplex where the initial form is not a monomial, and intersect these over
all 3 x 3 minors. This immediately gives a polyhedral decomposition of this space,
which will obviously have cone point equal to the zero matrix; removing this yields a
polytopal complex. We can do the same thing to look at the space of d x n matrices of
tropical rank 7. Similarly, it follows from results in [5] that the space of d X n matrices
of Kapranov rank r is the no-monomial subcomplex of the Grobner fan of the ideal
generated by all (r + 1) x (r + 1) determinants of a d x n matrix of indeterminates.
Since these determinants do not form a Groébner basis, these two are not in general
the same, although Proposition 2.5 implies that these complexes are the same in our
case of r = 2.

Our goal is to use geometry in order to get a more explicit, evocative, and tractable
definition of this polyhedral complex. The first step is to mod out by translations.
Adding a constant to each column does not change the point configuration or the
tropical rank of a matrix. Similarly, adding a constant to a row merely translates the
point configuration, which does not change its rank. A note of caution is in order: we
must at each step check that we do this in a continuous fashion, so as to preserve the
structure of the space, since obviously we can distort the space by picking a bad choice
of representatives from the cosets of the translation action. We will describe a general
continuous translation process in Section 3.

After normalizing in this manner, we then investigate the interesting part of the
space by removing the cone point given by the zero matrix to produce a polytopal
complex, which we denote by 7,,. In particular, we use tropical geometry to give
a smaller and more informative polyhedral decomposition than the one given by the
Grobner fans, and demonstrate how this can be used to compute homology of the
resulting polyhedral complex. This geometric description is useful in proving that the
complex is shellable for d = 3; we conjecture that this is true in general.

From this description, it will also be apparent that the d x n matrices of Barvi-
nok rank two comprise a subcomplex, which we denote by Bg,,. This subcomplex has
interesting homology, which again is most easily computable via the use of the descrip-
tion emanating from tropical geometry. We give a complete description and analysis
of these complexes for d = 3; for d = 4 and small n we present computational results.

3. The general case

In this section, we give a general discourse on d X n matrices of tropical rank two, giving
a general geometrically inspired polytopal decomposition of the complex consisting of
the interesting part of this space. We use this polyhedral decomposition to show that
the complex is pure of dimension d 4+ n — 4, as is the subcomplex By, of matrices of
Barvinok rank two.

First, we describe how to construct a canonical line given a set of n points on a
line in TP4~!. Let P be the tropical convex hull of the n points; this is the union of all
tropical line segments between pairs of points, and is a tree. By a result in [6], tropical
line segments between two points are the concatenation of ordinary line segments,
whose slopes are all 0/1-vectors, such that the slopes taken along the path from z
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FIGURE 1. Construction of a canonical line from six pointsin TP? lying on a
line. The coordinate leaves are labeled with their direction; the points as well asthe
other nodes of the tree comprising their convex hull arelabeled with their coordinates.

to y form a descending chain in the Boolean poset. At any node of this tropical line
segment, it follows immediately that the slopes of the one or two outgoing line segments
are 0/1-vectors with disjoint supports. Note that a given such line segment, since we
are working in TP~! where (1,...,1) = 0, has two distinct 0/1 slopes, 2 and —z,
where both are 0/1 vectors with complementary supports. When we talk about the
slope of an outgoing line segment from a point p to a point g, we mean the one of these
which is a positive multiple (in the ordinary sense) of ¢ — p.

Therefore, given any node of the tropical convex hull, the slopes of the outgoing
line segments are all 0/1-vectors with disjoint supports in {1,...,n}; if two supports
intersected, then taking points in those directions would yield a tropical line segment
violating the property of the previous paragraph. At each node where the union of
these supports is not {1,...,n}, we add an outgoing leaf to infinity in the positive z;-
direction for every i not in the union. (Note that if an original point is on a coordinate
leaf, this has the effect of extending that leaf.)

We claim that this produces a tropical line, as in Figure 1. This follows imme-
diately from the fact that it produces a tree with leaves heading to infinity in the
coordinate directions, and 0/1 slope vectors which satisfy the zero tension condition.
Any such tree is in fact a tropical line [10]. We call this the line generated by the n
points in question.

We now employ our translation reduction. The leaf in the direction of the first
coordinate has an endpoint; we translate (the line and) the point configuration so that
this point is sent to (0,...,0). This action is easily checked to be continuous, since



The moduli space of n tropically collinear pointsin R? 7

continuously moving the points moves this tropical line continuously. Similarly, the
zero matrix consisting of all n points at the origin is clearly a cone point for this set
of representatives for the cosets under translation, since to find a line containing the
k-dilates of a point set, we need merely to dilate the line by a factor of k. Thus,
modding out by this translation action yields a polyhedral complex.

The faces of this complex will be enumerated as follows. First, pick a tree with
d labeled leaves (the coordinate directions.) Then, for each of the n points, pick a
combinatorial place on the tree for it: on a leaf, on an interior segment, or at a node.
To obtain a valid face, we require that the n points must regenerate the prescribed
tree; this is a combinatorial condition, stating that every internal node of the tree must
lie on a segment between two of the n selected points. This setup of a fixed tree with
labeled leaves and fixed combinatorial locations for the points will be the combinatorial
object corresponding to our cone. See Figure 2 for some examples.

The corresponding cone consists of all n-point configurations which produce this
particular combinatorial tree, with (0,...,0) at the endpoint of the leaf in the first
coordinate direction. This cone is described by several parameters: the lengths of the
internal edges of the tree (which fixes the nodes), and for each point on a leaf or an
interior segment, its distance from an adjacent node. These cones partition the space,
since each n-point configuration generates a tree via the process described above.

There is then a linear isomorphism from the set of feasible points in the parameter
space to the space of all n-point configurations which are in the described cone; there
is clearly a linear map, and since each interior segment is actually in the convex hull of
the point configuration, changing its length will change the point configuration, so the
map is injective. (This is why we had to carefully augment the partial tree given by
the tropical convex hull of the points, as opposed to taking any line containing them.)

Feasible points in the parameter space satisfy the following inequalities: for each
point on an interior segment vw, its distance from v must be at least zero and at most
the length of vw, and for each point on a leaf, its distance from its incident vertex
must be at least zero. This polyhedron is affinely isomorphic to the corresponding face
of the complex. It is full-dimensional inside the parameter space, whose dimension is
equal to the number of points on segments or leaves plus the number of interior edges.

We can compute the facets of this cone simply: they are the results when an
inequality in the parameter space is set to zero. Setting the length of an interior
segment to zero defines a facet only when there are no points on that segment; this
corresponds to contracting an interior edge of the configuration. The other facets
consist of sliding a point on the interior segment vw to either v or w.

From this, we can prove easily and satisfyingly that the complex is pure. This
is also implied by the classical theorem of Bieri and Groves [2], which states that the
tropical vanishing set 7 (I) is a pure polyhedral complex if I is prime (here I is the ideal
of all 3 x 3 subdeterminants of a d X n matrix of indeterminates); however, that proof
is algebraic and not enlightening regarding the complex at hand. We can construct a
maximal cone which has a given cone as a face as follows. First, slide each point at a
vertex onto one of the adjacent segments; choose a leaf when the vertex is a leaf of P,



8 DEVELIN

4 7 1 7 4
, , , , , 7
I 4 I 4 s
7 7 ! ’
s 4 s y / .
(4 / (4 7 / e
<- - / -<- - / <
/ / 4
/ / /
/ / /
/
/ %
/ e
/
/
< - - < - - <
' [ | \
/ / /
/ AN / [N / | \
/ | N / I N / | \\
/ | \ / | \ / | \
4 Y N\ ¥ Y N\ 4 y

FIGURE 2. How to find a cone of maximal dimension containing an arbitrary
cone. The first step involves moving points off vertices, the second step involves
splitting the tree at its non-trivalent nodes.

and a segment in P otherwise. This cone clearly has the original cone as a face. Let
P be the convex hull of the resulting configuration.

We now claim that the only internal nodes of the tree generated by P are nodes
incident on two ordinary line segments from P. Indeed, if a leaf of P were at an
internal node, it would be incident on a leaf of the tree by construction, and we would
have moved it onto that leaf in the first step. Consequently, each internal node of this
tree has at least two line segments of P adjacent to it. If this node is not trivalent,
insert a bridge into it to split the node into two parts in such a way that not all the
incoming line segments of P are on the same side (see Figure 2); then the resulting
point configuration generates the split tree. Letting this bridge go to length yields the
original cone, so we have constructed a cone with the original cone as a face. Keep
doing this until the tree is trivalent; the final cone will again have the original cone as
a face. This process is depicted in Figure 2.

Since its tree is trivalent, this cone it has d — 3 interior edges. Its dimension is
therefore equal to d—3 plus the number of points on an interior segment or a leaf, which
is all n of them. So the dimension of the cone is equal to d + n — 3, the maximum
possible for any cone in our decomposition, and it has the original cone as a face.
Therefore the polyhedral complex is pure of dimension d + n — 3, and the polytopal
complex is pure of dimension d +n — 4. It is easy to check that our operations do
not change the property of having Barvinok rank two (which means that the points
are all in the tropical convex hull of two points, which can be taken to be two of the
original points), and so by the same reasoning, the subcomplex of point configurations
of Barvinok rank two is also pure (as a polytopal complex) of dimension d + n — 4.

The polytopal complex we have given is much smaller than the complex given by
the Grobner decomposition. Considering only the facets, the Grébner decomposition
distinguishes the order of all the points on the interior segments, as well as the order
of all but the two furthest-out points on each coordinate leaf. Our decomposition does
neither, and hence has far fewer facets.

As constructed, however, our complex has the drawback of not being a simplicial
complex, which makes its homology somewhat harder to compute. The number of
facets of a cone is easy to compute: it is the number of internal segments with no
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points, plus the number of points on leaves, plus twice the number of points on internal
segments. By some easy dimension-counting, this cone will be a simplex whenever no
internal segment has multiple points. We can refine our decomposition to make it
simplicial by specifying the order of the points on internal segments. This still yields a
decomposition much smaller than the Grébner one, especially when n is much bigger
than d, such as in the case where d is fixed and we are investigating these complexes
for arbitrary n.

In the remaining two sections, we will use this small, geometric decomposition to
investigate the cases of d = 3 and d = 4, giving a nice combinatorial description of
both T3, and Bs, and using this to compute their homology and shell the former.
For d = 4, we present experimental results and give an expanded geometric picture for
the specific case of n = 4 and d = 4, using this to interpret geometrically the duality
given by transposing the matrix.

4. The two-dimensional case

In this section, we investigate the case of n points on a line in the tropical projective
plane TP?. This is equivalent to considering the space of 3 x n matrices of tropical
rank two, or the points in the tropical determinantal variety 7 (I), where I is the ideal
generated by all 3 x 3 minors of a 3 X n matrix of indeterminates. We consider this
space of matrices.

Modding out by the uninteresting parts as in Section 3 leaves us with the space
of n points on the standard line with apex (0,0,0), not all on the relative interior of
one branch (if n points all lie on the same branch of a line, the process in Section 3
will generate the line where one of them is the apex.)

We now investigate this polytopal complex. Each point can either be at the apex
0, or on branch 1, 2, or 3; therefore, each matrix M has an associated length-n string
in the alphabet {0,1,2,3}, which we denote by ¢(M). Let Ax denote the topological
closure of (X)), where X is a string of length n in that alphabet. We then have the
following proposition.

Proposition 4.1

As X ranges over all length-n strings in {0,1,2,3}, excepting the strings all of
whose entries are identical, the sets Ax are simplicial cones forming a simplicial com-
plex. The facets of Ax are of the form Ay, where Y ranges over all strings identical
to X except that one non-zero character has been changed to 0.

Proof. This is a special case of the general procedure of Section 3. Explicitly, Ax is
defined by the following set of inequalities and equalities on the matrix M:

Mij :Olfl%X], and
M;; > 0if i = X;.
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The matrices M with ¢(M) = X are those for which the inequalities are all strict.
The facets of Ax correspond to setting one of the inequalities to an equality, which
corresponds to changing an X; to 0. This produces Ay, where Y = X except that
Y; = 0 while X; # 0.

The cone has as many facets as dimensions, and hence is simplicial. O

This simplicial complex T3, is easy to describe. The dimension of a cone is
equal to the number of nonzero entries (subtract one to get the dimension of the
corresponding simplex.) The facets are the strings with no zeroes, except that the
strings (1,...,1), (2,...,2), and (3,...,3) are not present; there are 3" — 3 of these.
The extreme rays (points of the complex) are the strings with one nonzero entry; there
are 3n of these. Except for the top dimension, the number of k-faces of the simplicial

complex is equal to 3F+1 (5ie)-

Theorem 4.2
The complex T3 ,, is shellable.

Proof. We exhibit an explicit shelling of T3 ,,. Its facets are all strings of length n in
the alphabet {1,2,3} excepting (1,...,1),(2,...,2),(3,...,3), and the intersection of
two facets Ax and Ay is equal to Az, where Z; is equal to 0 unless X; = Y;, in which
case it is equal to both of them.

We construct the “snake ordering” of the ternary strings of length n recursively
as follows. If n =1, we have 1 < 2 < 3. If n > 1, denote by X the string X minus its
first letter. Then we define X < Y if:

X1 <Yy, or
X1 =Yiisodd and X < f’, or
X1 =Yiiseven and X > Y.

The proof is then complete with the following lemma. O

Lemma 4.3

The snake ordering, with any subset of the facets (1,...,1), (2,...,2), and
(3,...,3) removed, is a valid shelling order for the simplicial complex which remains.

Proof. The proof is by induction. For n = 1, the lemma is trivial. For n = 2, it is
easily checked. Suppose n > 2; we need to check that if X < Y, then there exists some
Z <Y suchthat ZNY isafacet of Y and X NY C Z2NY.

If X1 = Y7, then by the inductive hypothesis we are done, since the set of facets
with X; = k for fixed k are listed in either the snake ordering or its reverse; these
orderings are isomorphic, and the facets missing are some subset of (1,...,1), (2,...,2),
and (3,...,3). Next, suppose X; < Y7. In general, we can define Z by setting Z; = Y;
for ¢ # 1 and setting Z; to be anything less than Y;.

The only case in which this fails is the case where Y = (2,1,...,1), X3 = 1,
and (1,...,1) is removed. In this case, since X # (1,...,1), there exists some j > 1
with X; # Yj. Then define Z via Z; = Y, for i # j and Z; = X;. Since n > 2,
Z is not the all-2’s vector, so it has not been removed. Furthermore, Z < Y, since
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Z, =Y =2isevenand Z > Y because Y = (1,...,1) is minimal in the snake ordering
on (n — 1)-strings. Therefore, Z is as desired, completing the proof. O

We can now easily compute the homology of T3 ,,.

Corollary 4.4
H, 1(T3,) = 7%" =3, and H;i(T5,) =0 fori#n—1.

Proof. Since the complex is shellable, from the Mayer-Vietoris sequence for reduced
homology, it immediately has only top homology, which is free of some rank. To
compute this rank, it suffices to compute the Euler characteristic of the complex. Up
to a sign, this is equal to:

n+ki0(1)k3k<:):( ( 3+Z ) ’“3’“( ))

34 (1) — e —3),
so Hy_1(T3,,) is free of rank 2" — 3 as desired. O

Thus, unlike the classical case, the space of n points on a line gets exponentially
complicated (at least topologically) as n grows large, even in two-space. It is worthwhile
to note that this description of the simplicial complex is in general much smaller
than the natural Grobner description (although not for n = 3, where it is a minimal
simplicial refinement of the non-simplicial Grobner-derived complex.) The facets of
the Grobner-derived complex in general correspond to not only a distribution of the
points among the branches, but also an ordering of all but the two furthest points
on each branch. This makes them far more numerous; for example, for n = 7, our
complex has 2184 facets and 21 extreme rays, while the Grobner decomposition of the
same space has 48510 facets and 378 extreme rays.

5. The subcomplex of Barvinok rank two matrices

In the 3 x n case, the subspace of all matrices of Barvinok rank two (which we will
call Bs ) exhibits quite different behavior. As in the case of tropical rank two, the
property of having Barvinok rank two is translation-independent, so as before we can
reduce to the case of n points on the standard line. Similarly, dilation does not change
the Barvinok rank of a matrix, so we can pass to the simplicial complex description.
A matrix has Barvinok rank two if and only if the corresponding point configuration is
contained in the convex hull of two points; in our simplicial complex description, this
is equal to the union of the simplicial cones corresponding to strings including only
0 and two of {1,2,3}, or the union of the facets corresponding to length-n ternary
strings containing only two distinct symbols.

This subcomplex naturally breaks up into three parts, one for each pair of symbols;
we will call these C1 2, Ca 3, and C1 3. All three of these parts are isomorphic. C 3 is the
union of facets corresponding to all length-n strings of 1’s and 2’s, except for the all-1’s
and all-2’s vectors; this object is, as a simplicial complex, equal to the boundary of the
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n-dimensional crosspolytope with the interiors of two opposite facets removed. These
three crosspolytopes, which are homotopy equivalent to S,_o x I, are spliced together
along the boundaries of the missing facets, so we have for instance C 2 N (' 3 equal to
the boundary of the would-be facet (1,...,1), namely Uj_1Axs, where Xf =1— 6.
We will denote the homological sum Y (—1)/Ay; by [1], and we will similarly denote
the would-be homological boundary of the missing facets (2,...,2) and (3,...,3) by
[2] and [3] respectively.

Computing the homology of this object is not too hard via a Mayer-Vietoris
sequence. (12, C13, and Cy3 have homology only in dimension n — 2, while the
intersection C1 3N C} 2 also has homology only in dimension n — 2, and the intersection
C23 N (C12UC 3) only has homology in dimensions 0 and n — 2. Consequently, by
the Mayer-Vietoris sequence, Hy(Bs,,) = Z, and the only other possible homology is
in dimensions n — 2 and n — 1.

To compute these homologies, we need to compute the cycles in Cj 2, Co3, and
(' 3; all computations are essentially the same. The homology of C > is generated by
the cycle [1]. For a facet in C 2, which corresponds to a string of 1’s and 2’s, define
sgn(F) = (—1)", where r is the number of 1’s in the string. Then it is easy to see that
the homological boundary 0(}_ sgn (F') F) is precisely [1] + (—1)"[2].

We must now consider two cases. First, suppose n is even; then [1] + [2] is a
boundary, as is [2] + [3] and [1] + [3]. This immediately implies that

Hp2(Bsn) = (Z[1] + 2[2] + 2[3]) /([1] + [2], 1] + [3], [2] + [3]) = Z/2Z.

Meanwhile, H,_1 is given by the (n — 1)-cycles whose boundary is zero, i.e.
{(z,y,2) | (1] + [2]) + »(12] + [3]) + 2([1] + [3]) = 0}. However, this is just the
zero vector (z,y,z), so Hy,_1(B3,) = 0 for n even.

Similarly, when n is odd, the boundaries are [1] — [2], [2] — [3], and [3] — [1]. We
then have

Hy (B3 n) = (2[1] + 2[2] + Z[3])/([1] - 2], [1] - 3], [2] - [3]) = Z,and
Hp1(Bsn) = {z,y, 2 [ 2([1] = [2]) + y([1] = [3]) + 2([2] - [3]) = 0} = Z.

We have proven the following theorem about the homology of the (interesting
component of ) the space of 3 x n matrices of Barvinok rank two.

Theorem 5.1

The nonzero homology of the simplicial complex Bs,, is given by:

neven: H, o=72/2Z, H =7
nodd : anlzz, Hn,QZZ, H1:Z

Again, our simplicial complex description is far more informative than the Grébner
decomposition. For n = 7, the subcomplex of Barvinok rank two has 378 facets in our
presentation and 27720 in the Grobner one.

Figure 3 shows the situation for n = 3, that is, 3 x 3 matrices of rank two. The
space of all 3 x 3 matrices of tropical rank two turns out to be the 2-skeleton of the
product of two triangles, Ay x As. This is represented as a Schlegel diagram in 3-space,
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(3,0,0)

FIGURE 3. Thepolyhedral complex of 3 x 3 matrices of tropical rank two.

a triangular prism with a third parallel triangle inside it joined to the other two in the
obvious way.

The Grobner decomposition corresponds to precisely this complex; our description
corresponds to subdividing the squares into two triangles to make the complex, the
dotted lines in the figure. One can see the three-dimensional homology Z° as the five
empty three-dimensional chambers. The Barvinok subcomplex consists of the union
of all faces whose vertices only have two distinct numbers; this is the union of the
nine squares in the Grébner decomposition, and none of the triangles. This union is
evidently a torus, the union of three triangular prisms missing caps (or three octahedra
with missing opposite facets.)

The derived cross-polytopal decomposition of B3, suggests the following conjec-
ture.

Conjecture 5.2 For all m and n, the complex B,, , of m x n matrices of Barvinok
rank two is a manifold.

This is obviously true for Bs, from the decomposition into crosspolytopes. As
we will see in the next section, By, has a more complicated decomposition, but the
complexity of this decomposition is still independent of n, and its homology is small.
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(z,0,0,0) (0,0,s,2)
(0,0,s,s)
(0,0,0,0)

FIGURE 4. A typica linein TP?, wheres > 0 andw, z > s.

6. The three-dimensional case

All homology calculations in this section were done using the topaz package of
polymake [7].

In this section, we discuss the case of n points on a line in TP3, which corresponds
to the space of all 4 x n matrices of tropical rank two. We will give a complete,
nice geometric description along the lines of Section 4 for the case of 4 x 4 matrices of
tropical rank two, and point out the subcomplex of matrices of Barvinok rank two. We
will also present homology computations for small values of n for these two complexes;
as in the n = 3 case, the Barvinok subcomplex appears to have periodic behavior with
small homology, while the full complex has only free top homology, suggesting that
the complex may be shellable.

Lines in TP? have the form shown in Figure 4. Unlike in TP?, not all lines are
translates of each other. There are three distinct classes of lines, depending on which
directions are paired with each other, plus a degenerate case in which all four coordinate
directions come together at a single point. The line shown in Figure 4 has directions 1
and 2 paired and directions 3 and 4 paired. In TP?~!, the line will look like a tree with d
leaves heading off in the coordinate directions; the slopes of the intermediate segments
are as necessary for the zero tension condition. For instance, in Figure 4, at the interior
point (0,0,0,0), there are three segments going out, with slopes (1,0,0,0), (0,1,0,0),
and (0,0,1,1). These slopes (taken with magnitudes so that they are 0/1-vectors) add
up to (1,1,1,1), which is equal to 0 in TP3.

Deconstructing the complex T, 4 geometrically can be done as in Section 3, by
drawing all trivalent trees with four labeled leaves and then placing the points on the
leaves and/or interior segments. There are three such trees corresponding to the three
pairings of the directions {1,2,3,4}. For each tree, we can place each of the points
{1,2,3,4} on one of five segments. Some of these placements, however, do not yield
facets. In particular, there must be at least one point placed on one of the two leaves
on each side of the tree; otherwise, the points will not generate the tree in question.
By inclusion-exclusion, this yields that the number of facets of this decomposition is
3(5* — 3% — 31 +1%) = 1392. The non-simplicial facets are the ones with two points
on the interior segment; there are 3(12)(4) = 144 of these. In order to get a simplicial
decomposition, we must break these each into two simplices by specifying the order of
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Picture 3 (72) Picture 4 (16)

Picture 5 (144) Picture 6 (36) Picture 7 (72) Picture 8 (144)

FIGURE 5. Theeight different ways (up to symmetry) that four points can be on
aline. Theboxesin Pictures1, 2, 5, and 6 indicate that those points can be anywhere
in atwo-dimensional cone; the box in Picture 4 indicates that the point inside it can
be anywherein athree-dimensional cone.

the interior points; this turns the 144 simplices into 288, for a total of 1536 simplices
in our simplicial complex. There are 58 extreme rays.

However, we can come up with an even smaller description by combining some of
these simplices, again using geometry. The fundamental observation is the following: if
two of the points are on a leaf, and one point is on the interior segment, then the fourth
point can be anywhere in a two-dimensional orthant with apex equal to the interior
point and directions equal to the positive coordinate directions of the two coordinates
on the other side of the bridge from the leaf. We represent this by drawing a box
around the relevant parts of the tree to denote that the point can be anywhere in this
box. This particular situation is represented by picture 1 in Figure 5.

The eight pictures in Figure 5 represent the eight different types of cones we
use for a smaller polytopal decomposition, along with the number of cones in each
symmetry class (since we can assign the directions and points arbitrarily to a given
picture.) This creates a decomposition with f-vector (34,264, 888,1356,772) (i.e. 34
extreme rays, and 772 facets.) What we wish to highlight here is the description of
the complex in terms of valid pictures. As with our somewhat larger 1536-simplex
decomposition, it is clear from the pictures what the facets of each cone are; inside
a box, they correspond to moving the point in the box to a facet of the box, while
outside the boxes they correspond to the previously described operation.

Two of our symmetry classes, pictures 4 and 6, are not simplicial. Picture 4
represents the case where three of the points are on a coordinate leaf and the remaining
point is anywhere in the three-dimensional cone given by the closest point, which really
means, from an inequality perspective, that it is inside all of the three-dimensional
cones at each of the points. We can make this simplicial by specifying which of the
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FIGURE 6. An example of duality. The configuration on the left, a cone in the
class of Picture 5 in Figure 5, is dua to the configuration on the right, a cone in the
class of Picture 8. Transposing the matricesin the left-hand cone yields the matrices
in the right-hand cone.

points is the lowest, thus breaking this into three smaller subcones. Similarly, in
Picture 6, each point in a two-dimensional cone must be inside both two-dimensional
cones with apex a point on the interior segment; distinguishing the order of the two
interior points again makes this simplicial. This introduces some extra faces of lower
dimension as well, making the f-vector (34,264,904, 1440, 840).

Computing the homology of this T} 4 yields that Hy(Ty4) = 7™ and that all other
homology groups are zero. This, along with the shelling for 73 ,,, yields the following
conjecture.

Conjecture 6.1 For all m and n, the complex T, ,, consisting of m x n matrices of
tropical rank two is shellable.

This conjecture is further strengthened by the computation (using similar meth-
ods) that Ty 5 also has only top homology (Z3%!, to be precise.)

Another nice feature of the geometric description given by the eight pictures in
Figure 5 is that the duality of the simplicial complex is clearly present. Since we
are describing the space of 4 x 4 matrices of tropical rank two, the map given by
transposition should be an involution, and indeed we can see this in the simplicial
complex. In each picture, there are four points and four leaves, and by looking at the
relative distances between the points and the leaves, we can draw a dual picture where
the points become the leaves and the leaves become the points. For instance, consider
Figure 6. In the left-hand diagram, leaf 1 is closest to A, second closest to C, and
equidistant from B and D. Leaf 2 is closest to D, then B, then C, then A. Point A
(which can be anywhere in a two-dimensional cone) is closest to leaves 1 and 4, and
furthest from leaves 2 and 3; the rest of the points and leaves can have their distances
to members of the other category similarly ordered. In the right-hand diagram, the
same orderings hold, except that the points are now represented by leaves and vice
versa. (The points 1 and 4 can be on leaf A in either order in the cone represented by
the right-hand diagram.)

In this fashion, we can compute that a cone in the class of Picture 1 will be dual to
another cone in that class, as the upper-left leaf becomes the point in the box, the two
points on the upper-left leaf become the two leaves of the box, and so on. Similarly, the
cones in Picture 2 are dual to other cones in Picture 2, the cones in Picture 3 are dual
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to the cones in Picture 6 (after those cones are split into simplices by distinguishing
the order of points on the initial segment), the cones in Picture 4 are dual to each other
(again after distinguishing the bottom point to make them simplicial), the cones in
Picture 5 are dual to the cones in Picture 8 (as in Figure 6), and the cones in Picture
7 are dual to each other.

Meanwhile, the subcomplex of Barvinok rank-two configurations, By 4, is easily
picked out; this is the union of the facets corresponding to pictures 1, 3, 4, and 6.
Computing the homology yields some interesting results reminiscent of the Bs,, case;
H,(By4) =(0,2/2,7/2,0,Z). Thus it has top homology Z, and torsion in dimensions 1
and 2. Computing homology for By 5 yields similarly striking results; we get H.(B45) =
(0,2/2,0,2,7/2,0). Finally, H,(Bs¢) = (0,Z/2,0,0,Z/2,0,Z).

As in the three-dimensional case, there is a suggestive way to decompose the
Barvinok subcomplex By ,,; indeed, a similar technique works for B,, ,. The facets of
T4, which are in By, are those where the points are contained in the convex hull of
two points; that is, the configurations where no pair of leaves on the same side of the
bridge contain points. These decompose into twelve classes, depending on the direction
of the bridge (three choices) and a choice of a leaf from each side which is allowed to
contain points (four choices.) These twelve classes of cones intersect predictably; for
instance, the class in Figure 7 shares facets with three other classes as depicted. If
we could now bound the homology of each of these classes and of their intersections
(each of which corresponds to a picture) independent of n, we could then bound the
homology of the entire complex.

Furthermore, each class has a nice combinatorial description as a complex. Its
faces correspond to length-n strings in the alphabet {1,2,3, A, B,C}, where 1 and 2
correspond to the leaves, 3 corresponds to the interior segment, A and B correspond to
the intersection points of the two leaves with the interior segment, and C' corresponds
to the central point in the case where the interior segment has length 0. The set of
strings corresponding to actual faces consists of all strings with the following properties:

e If the string contains C| it contains none of {4, B, 3}.
e The string does not contain only the symbols {1,3, A} or only the symbols
{2,3,B}.

The dimension of the cone is equal to the number of 1’s, 2’s, and 3’s, plus one
if the string does not contain any C’s (i.e. corresponds to an unfused picture.) The
intersection rule is also easy to give combinatorially. We simply intersect the strings
coordinate-wise, via the following intersection table, which just corresponds to finding
the largest picture which is contained in both component pictures.

Q| Q| o] Qf o
Q| | | co| W] | o
Q| Qf | | Qf | 2>
Q| | Q| | ™| Q|
QO Q| Q| Q| Q| Q

QA | | Qf =] —
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FIGURE 7. The picture on the right-hand side represents a class of four pointsin
TP?3 of Barvinok rank two, namely the class where all four pointsare in theindicated
region of the indicated tree. The three pictures on the left are three other classes
sharing facets with the class on the right; the shared facet classis given by four points
on the indicated region of the picture labeling the edge.

After doing the coordinate-wise intersection, if there are any C’s in the resulting
string, change all the A’s, B’s, and 3’s to C’s. The final string then corresponds to the
intersection of the two cones.

This procedure works for higher d as well, yielding a decomposition of Bg,, into
simple picture classes which intersect nicely with each other, and whose members also
intersect via a similar coordinate-wise intersection rule; the number of such classes
does not depend on n. In this fashion, it seems reasonably likely that the behavior
we have observed holds in general: that the homology of B;, does not increase in
complexity as n gets large.

7. Conclusion

In this paper, we have demonstrated how the complex Ty, of d x n matrices with
tropical rank two has a nice decomposition, which in general is much smaller than the
Grobner decomposition, and which can be expressed in terms of pictures. In addition,
the space By, of d x n matrices of Barvinok rank two is a subcomplex, and both
complexes are pure. For dimension three, we show that Tj, is shellable, while By,
has periodic and small homology; we conjecture that these are true for arbitrary d
and n.

The above framework of pictures can also be implemented for rank higher than
two. The rank-two case is the most important for two reasons: first of all, it has a
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phylogenetic interpretation, and second of all, we have a good description of lines. In

rank higher than two, tropical and Kapranov ranks diverge, although they agree in

the case of corank one (n points on a hyperplane.) In addition, the space of r-planes
in TP?~! is in general a complicated one. Nonetheless, the methods we have presented
here may well be applicable to such a study.
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