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Abstract

The tropical semiring (R,min,+) has enjoyed a recent renaissance, owing to
its connections to mathematical biology as well as optimization and algebraic
geometry. In this paper, we investigate the space of labeled n-point configura-
tions lying on a tropical line in d-space, which is interpretable as the space of
n-species phylogenetic trees. This is equivalent to the space of n × d matrices
of tropical rank two, a simplicial complex. We prove that this simplicial com-
plex is shellable for dimension d = 3 and compute its homology in this case,
conjecturing that this complex is shellable in general. We also investigate the
space of d × n matrices of Barvinok rank two, a subcomplex directly related
to optimization, giving a complete description of this subcomplex in the case
d = 3.

1. Introduction

In ordinary linear algebra over a field, the space of n labeled points on a line in R
d is

a rather simple one. Consider this space of all d × n matrices whose columns lie on a

line. By translating the points (an action corresponding to adding a constant to each

row of the matrix), we can assume that the first point lies at the origin. Modulo this

translation, this space of matrices then has an obvious cone point, namely the zero

matrix. Removing this matrix yields the space of all matrices with first column zero

whose remaining n−1 columns lie on a unique line. This line is chosen from the pencil

P
d−1 of lines through the origin, and each point lying on the line has one parameter in

R, so the space is just P
d−1 × R

n−1.

Keywords: Tropical linear algebra, rank two, Barvinok rank, phylogenetic mathematics, moduli
space.

MSC2000: 52B99.
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When one is not working over a field, the story is more complicated. Our goal is

to investigate the space of n points on a line in tropical d-space, i.e. d-space over the

tropical semiring (R,⊕,�), where tropical addition ⊕ is defined via a⊕ b = min(a, b),

and tropical multiplication � is defined via a � b = a + b. This space, viewed as a

subset of R
d×n as in the usual case, contains some trivial behavior (translation and

dilation); when this is removed, what remains is an interesting polytopal complex. We

will use tropical geometry to give a simple, pictorial decomposition of this complex.

Aside from being of intrinsic interest, this space also has connections to another

burgeoning area of mathematics, the study of phylogenetic trees. It is often convenient

to work in projective space rather than R
d; indeed, all tropical geometry naturally

takes place in TP
d−1 := R

d/(1, . . . , 1)R. Here, the tropical Grassmannian Gr (2, d)

parametrizes the space of lines [10], which is equivalent to the space of phylogenetic

trees with d leaves [3], i.e. d present-day species.

If we consider the case of n points on a line in d-space, this represents the more

general case of having n species on a tree with d leaves. In real life, of course, the data

will not work out exactly, but by seeing how close the closest fit of all d-dimensional

trees is to the data given to us by the n species (namely the distance data between

them), we can come up with a likelihood estimate that the species fit into a tree with

few branches. For instance, suppose we are trying to resolve where a fossil species fits

into the ancestry tree of three present-day species. If it is related, the four species

should comprise a good approximation of four points on a line in three-space; if it is

far-flung, they should not (though of course there will be a line in four-space which

approximates them well.)

Furthermore, determining where on the tree it lies gives us an estimate of where

it lies as far as the history goes: is it the common ancestor of the three species? Is it a

direct ancestor of one of them but not the other two? Such questions can be resolved

by fitting a tree to the data.

Therefore, understanding the space of such n-point configurations is important

for the study of phylogenetic trees. The simplicial complex description we obtain will

dissect this space into simple chambers, making it easy to test the data against a

possible tree of best fit in each chamber.

Another motivation for the study of the tropical semiring comes from the field of

optimization. A matrix has Barvinok rank k if it can be expressed as the (tropical)

sum of k matrices of tropical rank one but not as the sum of k − 1 such matrices [5];

a d × n matrix has tropical rank one if all of its rows are tropical scalar multiples of

each other, which is the same thing as saying that its ij-th entry is equal to xi + yj for

some x1, . . . , xd, y1, . . . , yn. The name comes from work of Alexander Barvinok and his

collaborators, who showed that the traveling salesman problem can be solved in poly-

nomial time if the Barvinok rank of a matrix is fixed [1]. The smallest nontrivial case

is Barvinok rank two, where there exists a polynomial-time recognition algorithm [4].

The space of n points on a line turns out to be equivalent to the space of n × d

matrices of tropical rank two, where the tropical rank of a matrix is defined to be the

size of its largest tropically nonsingular square minor. In ordinary linear algebra, the

translated definitions of tropical rank and Barvinok rank are equivalent (both being
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equal to ordinary rank), but over the tropical semiring Barvinok rank can be much

bigger. However, tropical rank is always less than or equal to Barvinok rank [5],

meaning that the space of matrices with Barvinok rank two is a subset of the space

of matrices with tropical rank two, and indeed it is a subcomplex. We will investigate

this subcomplex along with the larger complex of matrices of tropical rank two. We

conjecture that the larger complex is shellable, proving this for d = 3; however, the

subcomplex of Barvinok rank-two matrices is decidedly not, and even has torsion in

its homology. We determine this homology for d = 3 and give a description of this

complex for general d.

2. Preliminaries and generalities

Throughout this paper, it will prove convenient to work in tropical projective space

TP
d−1 := R

d/(1, . . . , 1)R. Every tropically linear subspace L has the property that if

x is in L, then so is x + k(1, . . . , 1) for all k; this is even true for any algebraic variety.

For this reason, TP
d−1 is the natural setting for tropical geometry, since the tropical

geometry of R
d is merely a cylinder over the tropical geometry of TP

d−1. Whenever

we refer to homology in this paper, we mean reduced homology.

The rank of a matrix, and therefore of the point configuration consisting of its

columns, can be defined in many different ways. We review three relevant definitions

given in [5], which are all equivalent over a field but inequivalent over the tropical

semiring.

Definition 2.1. The tropical rank of a matrix M is the largest r such that M has a

tropically nonsingular r×r minor. A square matrix is tropically singular if the tropical

determinant ⊕
σ∈Sn

( ⊙
i∈[n]

Miσ(i)

)
= minσ∈Sn

( ∑
i∈[n]

Miσ(i)

)

achieves the indicated minimum twice.

The tropical rank of a matrix is equal to the dimension of the tropical convex hull

of its columns, defined to be the set of all tropical linear combinations of those columns,

i.e. the dimension of the image of the matrix. This image has lineality space (1, . . . , 1),

and its image in tropical projective space is a polytopal complex. This definition of

rank is combinatorially nice, and is connected to the study of phylogenetic trees: n

points form a tree metric if and only if the negated distance matrix has tropical rank

two, in which case the tropical convex hull of the columns of this matrix is a realization

of the tree. Like ordinary polytopes, tropical convex hulls satisfy a Farkas lemma and

have a facet description. For more on tropical convex hulls, see ([6], [8]).

Another etymology for the tropical operations is as the image of the ordinary

operations on a power series ring K = k[[t]] under the degree map sending a power

series to its minimal exponent. This allows us to define linear subspaces as the tropical

vanishing sets of linear ideals, effecting the following definition.

Definition 2.2. The Kapranov rank of a matrix M is the smallest r such that there

exists a linear ideal I ⊂ K[x1, . . . , xn] of codimension r such that each column of M



4 Develin

is in the tropical vanishing set T (I). A vector a ∈ R
n is in the tropical vanishing set

T (I) if for each f ∈ I, the leading term of f with respect to the weight vector (1, a)

(i.e. weight 1 on t and weights a on the xi’s) is not a monomial.

The notion of Kapranov rank of course accompanies the study of linear subspaces.

The definition of tropical vanishing set is the natural one under the conception of the

tropical semiring as coming from this power series ring; another way to put it is that

the tropical vanishing set of an ideal is the image under the degree map of the ordinary

vanishing set of the ideal in Kn. For more on tropical algebraic geometry and the study

of linear subspaces, see ([9], [10]).

Our final definition of rank arises naturally in the field of optimization.

Definition 2.3. The Barvinok rank of a matrix M is the smallest r such that M is

the tropical sum of r tropically rank-one matrices. A matrix has tropical rank one if

its columns (equivalently, rows) are tropical scalar multiples of each other.

We will use the following more tractable reformulation of Barvinok rank.

Proposition 2.4 [5]

The Barvinok rank of a matrix M ⊂ R
d×n is the smallest r such that its columns

lie in the tropical convex hull of r points in TP
d−1.

Our goal is to investigate the space of n labeled points all lying on a line in TP
d−1.

These configurations correspond to d × n matrices of Kapranov rank two. There are

two reasons why this (rank two instead of rank one) is the natural definition of points

on a line. First of all, because of the projectivization, it is natural to investigate

point configurations in TP
d−1, where everything has one smaller dimension. This is

essentially akin to reverse homogenization; if we have n points on an arbitrary affine

line in ordinary R
d, in order to get them into a linear subspace one needs to add a

dimension. Another natural reason to investigate rank two matrices is that, with no

additive identity, there is no such thing as a rank-zero matrix. The structure of rank-

one matrices is uninteresting; with any of the three definitions of rank above, these

matrices are given by Mij = xi + yj for some choice of xi’s and yj’s. This is because in

tropical projective space, where all the geometry lives, these point configurations are

just n copies of the same point.

In the rank two case, we have the following result.

Proposition 2.5 [5]

The properties of having tropical rank two and Kapranov rank two are equivalent.

A matrix enjoying these properties has Barvinok rank at least two.

The set of matrices of Barvinok rank two therefore comprises a subset of the

matrices with tropical or Kapranov rank two. We will investigate this set, which is

relevant in the field of optimization, along with the larger set of matrices of tropical

or Kapranov rank two, which are n-point configurations on a tropical line in TP
d−1.

As for the computation of this set, one way to do it is via Gröbner basis methods.

The definition of tropical rank above means that we can look at the Gröbner fans for

all 3 × 3 determinants of a d × n matrix of indeterminates; for each, we then pick
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out the subcomplex where the initial form is not a monomial, and intersect these over

all 3 × 3 minors. This immediately gives a polyhedral decomposition of this space,

which will obviously have cone point equal to the zero matrix; removing this yields a

polytopal complex. We can do the same thing to look at the space of d×n matrices of

tropical rank r. Similarly, it follows from results in [5] that the space of d×n matrices

of Kapranov rank r is the no-monomial subcomplex of the Gröbner fan of the ideal

generated by all (r + 1) × (r + 1) determinants of a d × n matrix of indeterminates.

Since these determinants do not form a Gröbner basis, these two are not in general

the same, although Proposition 2.5 implies that these complexes are the same in our

case of r = 2.

Our goal is to use geometry in order to get a more explicit, evocative, and tractable

definition of this polyhedral complex. The first step is to mod out by translations.

Adding a constant to each column does not change the point configuration or the

tropical rank of a matrix. Similarly, adding a constant to a row merely translates the

point configuration, which does not change its rank. A note of caution is in order: we

must at each step check that we do this in a continuous fashion, so as to preserve the

structure of the space, since obviously we can distort the space by picking a bad choice

of representatives from the cosets of the translation action. We will describe a general

continuous translation process in Section 3.

After normalizing in this manner, we then investigate the interesting part of the

space by removing the cone point given by the zero matrix to produce a polytopal

complex, which we denote by Td,n. In particular, we use tropical geometry to give

a smaller and more informative polyhedral decomposition than the one given by the

Gröbner fans, and demonstrate how this can be used to compute homology of the

resulting polyhedral complex. This geometric description is useful in proving that the

complex is shellable for d = 3; we conjecture that this is true in general.

From this description, it will also be apparent that the d × n matrices of Barvi-

nok rank two comprise a subcomplex, which we denote by Bd,n. This subcomplex has

interesting homology, which again is most easily computable via the use of the descrip-

tion emanating from tropical geometry. We give a complete description and analysis

of these complexes for d = 3; for d = 4 and small n we present computational results.

3. The general case

In this section, we give a general discourse on d×n matrices of tropical rank two, giving

a general geometrically inspired polytopal decomposition of the complex consisting of

the interesting part of this space. We use this polyhedral decomposition to show that

the complex is pure of dimension d + n − 4, as is the subcomplex Bd,n of matrices of

Barvinok rank two.

First, we describe how to construct a canonical line given a set of n points on a

line in TP
d−1. Let P be the tropical convex hull of the n points; this is the union of all

tropical line segments between pairs of points, and is a tree. By a result in [6], tropical

line segments between two points are the concatenation of ordinary line segments,

whose slopes are all 0/1-vectors, such that the slopes taken along the path from x
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0000000

0110000

0000101

0000301

0000102

0000103

0001010

0002020

0003020

(5)

(7)

(2) (3)

(1)

(6)

(4)

Figure 1. Construction of a canonical line from six points in TP
7 lying on a

line. The coordinate leaves are labeled with their direction; the points as well as the
other nodes of the tree comprising their convex hull are labeled with their coordinates.

to y form a descending chain in the Boolean poset. At any node of this tropical line

segment, it follows immediately that the slopes of the one or two outgoing line segments

are 0/1-vectors with disjoint supports. Note that a given such line segment, since we

are working in TP
d−1 where (1, . . . , 1) = 0, has two distinct 0/1 slopes, x and −x,

where both are 0/1 vectors with complementary supports. When we talk about the

slope of an outgoing line segment from a point p to a point q, we mean the one of these

which is a positive multiple (in the ordinary sense) of q − p.

Therefore, given any node of the tropical convex hull, the slopes of the outgoing

line segments are all 0/1-vectors with disjoint supports in {1, . . . , n}; if two supports

intersected, then taking points in those directions would yield a tropical line segment

violating the property of the previous paragraph. At each node where the union of

these supports is not {1, . . . , n}, we add an outgoing leaf to infinity in the positive xi-

direction for every i not in the union. (Note that if an original point is on a coordinate

leaf, this has the effect of extending that leaf.)

We claim that this produces a tropical line, as in Figure 1. This follows imme-

diately from the fact that it produces a tree with leaves heading to infinity in the

coordinate directions, and 0/1 slope vectors which satisfy the zero tension condition.

Any such tree is in fact a tropical line [10]. We call this the line generated by the n

points in question.

We now employ our translation reduction. The leaf in the direction of the first

coordinate has an endpoint; we translate (the line and) the point configuration so that

this point is sent to (0, . . . , 0). This action is easily checked to be continuous, since
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continuously moving the points moves this tropical line continuously. Similarly, the

zero matrix consisting of all n points at the origin is clearly a cone point for this set

of representatives for the cosets under translation, since to find a line containing the

k-dilates of a point set, we need merely to dilate the line by a factor of k. Thus,

modding out by this translation action yields a polyhedral complex.

The faces of this complex will be enumerated as follows. First, pick a tree with

d labeled leaves (the coordinate directions.) Then, for each of the n points, pick a

combinatorial place on the tree for it: on a leaf, on an interior segment, or at a node.

To obtain a valid face, we require that the n points must regenerate the prescribed

tree; this is a combinatorial condition, stating that every internal node of the tree must

lie on a segment between two of the n selected points. This setup of a fixed tree with

labeled leaves and fixed combinatorial locations for the points will be the combinatorial

object corresponding to our cone. See Figure 2 for some examples.

The corresponding cone consists of all n-point configurations which produce this

particular combinatorial tree, with (0, . . . , 0) at the endpoint of the leaf in the first

coordinate direction. This cone is described by several parameters: the lengths of the

internal edges of the tree (which fixes the nodes), and for each point on a leaf or an

interior segment, its distance from an adjacent node. These cones partition the space,

since each n-point configuration generates a tree via the process described above.

There is then a linear isomorphism from the set of feasible points in the parameter

space to the space of all n-point configurations which are in the described cone; there

is clearly a linear map, and since each interior segment is actually in the convex hull of

the point configuration, changing its length will change the point configuration, so the

map is injective. (This is why we had to carefully augment the partial tree given by

the tropical convex hull of the points, as opposed to taking any line containing them.)

Feasible points in the parameter space satisfy the following inequalities: for each

point on an interior segment vw, its distance from v must be at least zero and at most

the length of vw, and for each point on a leaf, its distance from its incident vertex

must be at least zero. This polyhedron is affinely isomorphic to the corresponding face

of the complex. It is full-dimensional inside the parameter space, whose dimension is

equal to the number of points on segments or leaves plus the number of interior edges.

We can compute the facets of this cone simply: they are the results when an

inequality in the parameter space is set to zero. Setting the length of an interior

segment to zero defines a facet only when there are no points on that segment; this

corresponds to contracting an interior edge of the configuration. The other facets

consist of sliding a point on the interior segment vw to either v or w.

From this, we can prove easily and satisfyingly that the complex is pure. This

is also implied by the classical theorem of Bieri and Groves [2], which states that the

tropical vanishing set T (I) is a pure polyhedral complex if I is prime (here I is the ideal

of all 3× 3 subdeterminants of a d× n matrix of indeterminates); however, that proof

is algebraic and not enlightening regarding the complex at hand. We can construct a

maximal cone which has a given cone as a face as follows. First, slide each point at a

vertex onto one of the adjacent segments; choose a leaf when the vertex is a leaf of P ,
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Figure 2. How to find a cone of maximal dimension containing an arbitrary
cone. The first step involves moving points off vertices; the second step involves
splitting the tree at its non-trivalent nodes.

and a segment in P otherwise. This cone clearly has the original cone as a face. Let

P be the convex hull of the resulting configuration.

We now claim that the only internal nodes of the tree generated by P are nodes

incident on two ordinary line segments from P . Indeed, if a leaf of P were at an

internal node, it would be incident on a leaf of the tree by construction, and we would

have moved it onto that leaf in the first step. Consequently, each internal node of this

tree has at least two line segments of P adjacent to it. If this node is not trivalent,

insert a bridge into it to split the node into two parts in such a way that not all the

incoming line segments of P are on the same side (see Figure 2); then the resulting

point configuration generates the split tree. Letting this bridge go to length yields the

original cone, so we have constructed a cone with the original cone as a face. Keep

doing this until the tree is trivalent; the final cone will again have the original cone as

a face. This process is depicted in Figure 2.

Since its tree is trivalent, this cone it has d − 3 interior edges. Its dimension is

therefore equal to d−3 plus the number of points on an interior segment or a leaf, which

is all n of them. So the dimension of the cone is equal to d + n − 3, the maximum

possible for any cone in our decomposition, and it has the original cone as a face.

Therefore the polyhedral complex is pure of dimension d + n − 3, and the polytopal

complex is pure of dimension d + n − 4. It is easy to check that our operations do

not change the property of having Barvinok rank two (which means that the points

are all in the tropical convex hull of two points, which can be taken to be two of the

original points), and so by the same reasoning, the subcomplex of point configurations

of Barvinok rank two is also pure (as a polytopal complex) of dimension d + n − 4.

The polytopal complex we have given is much smaller than the complex given by

the Gröbner decomposition. Considering only the facets, the Gröbner decomposition

distinguishes the order of all the points on the interior segments, as well as the order

of all but the two furthest-out points on each coordinate leaf. Our decomposition does

neither, and hence has far fewer facets.

As constructed, however, our complex has the drawback of not being a simplicial

complex, which makes its homology somewhat harder to compute. The number of

facets of a cone is easy to compute: it is the number of internal segments with no
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points, plus the number of points on leaves, plus twice the number of points on internal

segments. By some easy dimension-counting, this cone will be a simplex whenever no

internal segment has multiple points. We can refine our decomposition to make it

simplicial by specifying the order of the points on internal segments. This still yields a

decomposition much smaller than the Gröbner one, especially when n is much bigger

than d, such as in the case where d is fixed and we are investigating these complexes

for arbitrary n.

In the remaining two sections, we will use this small, geometric decomposition to

investigate the cases of d = 3 and d = 4, giving a nice combinatorial description of

both T3,n and B3,n and using this to compute their homology and shell the former.

For d = 4, we present experimental results and give an expanded geometric picture for

the specific case of n = 4 and d = 4, using this to interpret geometrically the duality

given by transposing the matrix.

4. The two-dimensional case

In this section, we investigate the case of n points on a line in the tropical projective

plane TP
2. This is equivalent to considering the space of 3 × n matrices of tropical

rank two, or the points in the tropical determinantal variety T (I), where I is the ideal

generated by all 3 × 3 minors of a 3 × n matrix of indeterminates. We consider this

space of matrices.

Modding out by the uninteresting parts as in Section 3 leaves us with the space

of n points on the standard line with apex (0, 0, 0), not all on the relative interior of

one branch (if n points all lie on the same branch of a line, the process in Section 3

will generate the line where one of them is the apex.)

We now investigate this polytopal complex. Each point can either be at the apex

0, or on branch 1, 2, or 3; therefore, each matrix M has an associated length-n string

in the alphabet {0, 1, 2, 3}, which we denote by φ(M). Let ∆X denote the topological

closure of φ−1(X), where X is a string of length n in that alphabet. We then have the

following proposition.

Proposition 4.1

As X ranges over all length-n strings in {0, 1, 2, 3}, excepting the strings all of

whose entries are identical, the sets ∆X are simplicial cones forming a simplicial com-

plex. The facets of ∆X are of the form ∆Y , where Y ranges over all strings identical

to X except that one non-zero character has been changed to 0.

Proof. This is a special case of the general procedure of Section 3. Explicitly, ∆X is

defined by the following set of inequalities and equalities on the matrix M :

Mij = 0 if i �= Xj, and

Mij ≥ 0 if i = Xj.
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The matrices M with φ(M) = X are those for which the inequalities are all strict.

The facets of ∆X correspond to setting one of the inequalities to an equality, which

corresponds to changing an Xj to 0. This produces ∆Y , where Y = X except that

Yj = 0 while Xj �= 0.

The cone has as many facets as dimensions, and hence is simplicial. �

This simplicial complex T3,n is easy to describe. The dimension of a cone is

equal to the number of nonzero entries (subtract one to get the dimension of the

corresponding simplex.) The facets are the strings with no zeroes, except that the

strings (1, . . . , 1), (2, . . . , 2), and (3, . . . , 3) are not present; there are 3n − 3 of these.

The extreme rays (points of the complex) are the strings with one nonzero entry; there

are 3n of these. Except for the top dimension, the number of k-faces of the simplicial

complex is equal to 3k+1
(

n
k+1

)
.

Theorem 4.2

The complex T3,n is shellable.

Proof. We exhibit an explicit shelling of T3,n. Its facets are all strings of length n in

the alphabet {1, 2, 3} excepting (1, . . . , 1), (2, . . . , 2), (3, . . . , 3), and the intersection of

two facets ∆X and ∆Y is equal to ∆Z , where Zi is equal to 0 unless Xi = Yi, in which

case it is equal to both of them.

We construct the “snake ordering” of the ternary strings of length n recursively

as follows. If n = 1, we have 1 < 2 < 3. If n > 1, denote by X̃ the string X minus its

first letter. Then we define X < Y if:

X1 < Y1, or

X1 = Y1 is odd and X̃ < Ỹ , or

X1 = Y1 is even and X̃ > Ỹ .

The proof is then complete with the following lemma. �

Lemma 4.3

The snake ordering, with any subset of the facets (1, . . . , 1), (2, . . . , 2), and

(3, . . . , 3) removed, is a valid shelling order for the simplicial complex which remains.

Proof. The proof is by induction. For n = 1, the lemma is trivial. For n = 2, it is

easily checked. Suppose n > 2; we need to check that if X < Y , then there exists some

Z < Y such that Z ∩ Y is a facet of Y and X ∩ Y ⊂ Z ∩ Y .

If X1 = Y1, then by the inductive hypothesis we are done, since the set of facets

with X1 = k for fixed k are listed in either the snake ordering or its reverse; these

orderings are isomorphic, and the facets missing are some subset of (1, . . . , 1), (2, . . . , 2),

and (3, . . . , 3). Next, suppose X1 < Y1. In general, we can define Z by setting Zi = Yi

for i �= 1 and setting Z1 to be anything less than Y1.

The only case in which this fails is the case where Y = (2, 1, . . . , 1), X1 = 1,

and (1, . . . , 1) is removed. In this case, since X �= (1, . . . , 1), there exists some j > 1

with Xj �= Yj. Then define Z via Zi = Yi for i �= j and Zj = Xj . Since n > 2,

Z is not the all-2’s vector, so it has not been removed. Furthermore, Z < Y , since
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Z1 = Y1 = 2 is even and Z̃ > Ỹ because Ỹ = (1, . . . , 1) is minimal in the snake ordering

on (n − 1)-strings. Therefore, Z is as desired, completing the proof. �

We can now easily compute the homology of T3,n.

Corollary 4.4

Hn−1(T3,n) = Z
2n

−3, and Hi(T3,n) = 0 for i �= n − 1.

Proof. Since the complex is shellable, from the Mayer-Vietoris sequence for reduced

homology, it immediately has only top homology, which is free of some rank. To

compute this rank, it suffices to compute the Euler characteristic of the complex. Up

to a sign, this is equal to:

−3(−1)n +

n∑
k=0

(−1)k3k

(
n

k

)
= (−1)n

(
− 3 +

n∑
k=0

(−1)n−k3k

(
n

k

))

= (−1)n(−3 + (3 − 1)n) = ±(2n − 3),

so Hn−1(T3,n) is free of rank 2n − 3 as desired. �

Thus, unlike the classical case, the space of n points on a line gets exponentially

complicated (at least topologically) as n grows large, even in two-space. It is worthwhile

to note that this description of the simplicial complex is in general much smaller

than the natural Gröbner description (although not for n = 3, where it is a minimal

simplicial refinement of the non-simplicial Gröbner-derived complex.) The facets of

the Gröbner-derived complex in general correspond to not only a distribution of the

points among the branches, but also an ordering of all but the two furthest points

on each branch. This makes them far more numerous; for example, for n = 7, our

complex has 2184 facets and 21 extreme rays, while the Gröbner decomposition of the

same space has 48510 facets and 378 extreme rays.

5. The subcomplex of Barvinok rank two matrices

In the 3 × n case, the subspace of all matrices of Barvinok rank two (which we will

call B3,n) exhibits quite different behavior. As in the case of tropical rank two, the

property of having Barvinok rank two is translation-independent, so as before we can

reduce to the case of n points on the standard line. Similarly, dilation does not change

the Barvinok rank of a matrix, so we can pass to the simplicial complex description.

A matrix has Barvinok rank two if and only if the corresponding point configuration is

contained in the convex hull of two points; in our simplicial complex description, this

is equal to the union of the simplicial cones corresponding to strings including only

0 and two of {1, 2, 3}, or the union of the facets corresponding to length-n ternary

strings containing only two distinct symbols.

This subcomplex naturally breaks up into three parts, one for each pair of symbols;

we will call these C1,2, C2,3, and C1,3. All three of these parts are isomorphic. C1,2 is the

union of facets corresponding to all length-n strings of 1’s and 2’s, except for the all-1’s

and all-2’s vectors; this object is, as a simplicial complex, equal to the boundary of the
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n-dimensional crosspolytope with the interiors of two opposite facets removed. These

three crosspolytopes, which are homotopy equivalent to Sn−2 × I, are spliced together

along the boundaries of the missing facets, so we have for instance C1,2 ∩C1,3 equal to

the boundary of the would-be facet (1, . . . , 1), namely ∪n
j=1∆Xj , where Xj

i = 1 − δij .

We will denote the homological sum
∑

(−1)j∆Xj by [1], and we will similarly denote

the would-be homological boundary of the missing facets (2, . . . , 2) and (3, . . . , 3) by

[2] and [3] respectively.

Computing the homology of this object is not too hard via a Mayer-Vietoris

sequence. C1,2, C1,3, and C2,3 have homology only in dimension n − 2, while the

intersection C1,3∩C1,2 also has homology only in dimension n−2, and the intersection

C2,3 ∩ (C1,2 ∪ C1,3) only has homology in dimensions 0 and n − 2. Consequently, by

the Mayer-Vietoris sequence, H1(B3,n) = Z, and the only other possible homology is

in dimensions n − 2 and n − 1.

To compute these homologies, we need to compute the cycles in C1,2, C2,3, and

C1,3; all computations are essentially the same. The homology of C1,2 is generated by

the cycle [1]. For a facet in C1,2, which corresponds to a string of 1’s and 2’s, define

sgn(F ) = (−1)r, where r is the number of 1’s in the string. Then it is easy to see that

the homological boundary ∂(
∑

sgn (F )F ) is precisely [1] + (−1)n[2].

We must now consider two cases. First, suppose n is even; then [1] + [2] is a

boundary, as is [2] + [3] and [1] + [3]. This immediately implies that

Hn−2(B3,n) = (Z[1] + Z[2] + Z[3])/([1] + [2], [1] + [3], [2] + [3]) ∼= Z/2Z.

Meanwhile, Hn−1 is given by the (n − 1)-cycles whose boundary is zero, i.e.

{(x, y, z) | x([1] + [2]) + y([2] + [3]) + z([1] + [3]) = 0}. However, this is just the

zero vector (x, y, z), so Hn−1(B3,n) = 0 for n even.

Similarly, when n is odd, the boundaries are [1] − [2], [2] − [3], and [3] − [1]. We

then have

Hn−2(B3,n) = (Z[1] + Z[2] + Z[3])/([1] − [2], [1] − [3], [2] − [3]) ∼= Z, and

Hn−1(B3,n) = {x, y, z | x([1] − [2]) + y([1] − [3]) + z([2] − [3]) = 0} ∼= Z.

We have proven the following theorem about the homology of the (interesting

component of) the space of 3 × n matrices of Barvinok rank two.

Theorem 5.1

The nonzero homology of the simplicial complex B3,n is given by:

n even : Hn−2 = Z/2Z, H1 = Z

n odd : Hn−1 = Z, Hn−2 = Z, H1 = Z

Again, our simplicial complex description is far more informative than the Gröbner

decomposition. For n = 7, the subcomplex of Barvinok rank two has 378 facets in our

presentation and 27720 in the Gröbner one.

Figure 3 shows the situation for n = 3, that is, 3 × 3 matrices of rank two. The

space of all 3 × 3 matrices of tropical rank two turns out to be the 2-skeleton of the

product of two triangles, ∆2×∆2. This is represented as a Schlegel diagram in 3-space,
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(0, 0, 2)

(2, 0, 0)

(0, 3, 0)

(0, 0, 1)

(3, 0, 0)

(0, 1, 0)

(0, 0, 3)

(0, 2, 0)

(1, 0, 0)

Figure 3. The polyhedral complex of 3 × 3 matrices of tropical rank two.

a triangular prism with a third parallel triangle inside it joined to the other two in the

obvious way.

The Gröbner decomposition corresponds to precisely this complex; our description

corresponds to subdividing the squares into two triangles to make the complex, the

dotted lines in the figure. One can see the three-dimensional homology Z
5 as the five

empty three-dimensional chambers. The Barvinok subcomplex consists of the union

of all faces whose vertices only have two distinct numbers; this is the union of the

nine squares in the Gröbner decomposition, and none of the triangles. This union is

evidently a torus, the union of three triangular prisms missing caps (or three octahedra

with missing opposite facets.)

The derived cross-polytopal decomposition of B3,n suggests the following conjec-

ture.

Conjecture 5.2 For all m and n, the complex Bm,n of m × n matrices of Barvinok

rank two is a manifold.

This is obviously true for B3,n from the decomposition into crosspolytopes. As

we will see in the next section, B4,n has a more complicated decomposition, but the

complexity of this decomposition is still independent of n, and its homology is small.
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(0, 0, s, s)

(0, 0, w, s)

(0, 0, s, z)

(0, y, 0, 0)

(x, 0, 0, 0)

(0, 0, 0, 0)

Figure 4. A typical line in TP
3, where s > 0 and w, z > s.

6. The three-dimensional case

All homology calculations in this section were done using the topaz package of

polymake [7].

In this section, we discuss the case of n points on a line in TP
3, which corresponds

to the space of all 4 × n matrices of tropical rank two. We will give a complete,

nice geometric description along the lines of Section 4 for the case of 4× 4 matrices of

tropical rank two, and point out the subcomplex of matrices of Barvinok rank two. We

will also present homology computations for small values of n for these two complexes;

as in the n = 3 case, the Barvinok subcomplex appears to have periodic behavior with

small homology, while the full complex has only free top homology, suggesting that

the complex may be shellable.

Lines in TP
3 have the form shown in Figure 4. Unlike in TP

2, not all lines are

translates of each other. There are three distinct classes of lines, depending on which

directions are paired with each other, plus a degenerate case in which all four coordinate

directions come together at a single point. The line shown in Figure 4 has directions 1

and 2 paired and directions 3 and 4 paired. In TP
d−1, the line will look like a tree with d

leaves heading off in the coordinate directions; the slopes of the intermediate segments

are as necessary for the zero tension condition. For instance, in Figure 4, at the interior

point (0, 0, 0, 0), there are three segments going out, with slopes (1, 0, 0, 0), (0, 1, 0, 0),

and (0, 0, 1, 1). These slopes (taken with magnitudes so that they are 0/1-vectors) add

up to (1, 1, 1, 1), which is equal to 0 in TP
3.

Deconstructing the complex T4,4 geometrically can be done as in Section 3, by

drawing all trivalent trees with four labeled leaves and then placing the points on the

leaves and/or interior segments. There are three such trees corresponding to the three

pairings of the directions {1, 2, 3, 4}. For each tree, we can place each of the points

{1, 2, 3, 4} on one of five segments. Some of these placements, however, do not yield

facets. In particular, there must be at least one point placed on one of the two leaves

on each side of the tree; otherwise, the points will not generate the tree in question.

By inclusion-exclusion, this yields that the number of facets of this decomposition is

3(54 − 34 − 34 + 14) = 1392. The non-simplicial facets are the ones with two points

on the interior segment; there are 3(12)(4) = 144 of these. In order to get a simplicial

decomposition, we must break these each into two simplices by specifying the order of



The moduli space of n tropically collinear points in R
d 15

Picture 8 (144)Picture 7 (72)Picture 6 (36)Picture 5 (144)

Picture 4 (16)Picture 3 (72)Picture 2 (144)Picture 1 (144)

Figure 5. The eight different ways (up to symmetry) that four points can be on
a line. The boxes in Pictures 1, 2, 5, and 6 indicate that those points can be anywhere
in a two-dimensional cone; the box in Picture 4 indicates that the point inside it can
be anywhere in a three-dimensional cone.

the interior points; this turns the 144 simplices into 288, for a total of 1536 simplices

in our simplicial complex. There are 58 extreme rays.

However, we can come up with an even smaller description by combining some of

these simplices, again using geometry. The fundamental observation is the following: if

two of the points are on a leaf, and one point is on the interior segment, then the fourth

point can be anywhere in a two-dimensional orthant with apex equal to the interior

point and directions equal to the positive coordinate directions of the two coordinates

on the other side of the bridge from the leaf. We represent this by drawing a box

around the relevant parts of the tree to denote that the point can be anywhere in this

box. This particular situation is represented by picture 1 in Figure 5.

The eight pictures in Figure 5 represent the eight different types of cones we

use for a smaller polytopal decomposition, along with the number of cones in each

symmetry class (since we can assign the directions and points arbitrarily to a given

picture.) This creates a decomposition with f-vector (34, 264, 888, 1356, 772) (i.e. 34

extreme rays, and 772 facets.) What we wish to highlight here is the description of

the complex in terms of valid pictures. As with our somewhat larger 1536-simplex

decomposition, it is clear from the pictures what the facets of each cone are; inside

a box, they correspond to moving the point in the box to a facet of the box, while

outside the boxes they correspond to the previously described operation.

Two of our symmetry classes, pictures 4 and 6, are not simplicial. Picture 4

represents the case where three of the points are on a coordinate leaf and the remaining

point is anywhere in the three-dimensional cone given by the closest point, which really

means, from an inequality perspective, that it is inside all of the three-dimensional

cones at each of the points. We can make this simplicial by specifying which of the
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1

4

A

B

D

3

2

C

1

3

2

D

BC

A

4

Figure 6. An example of duality. The configuration on the left, a cone in the
class of Picture 5 in Figure 5, is dual to the configuration on the right, a cone in the
class of Picture 8. Transposing the matrices in the left-hand cone yields the matrices
in the right-hand cone.

points is the lowest, thus breaking this into three smaller subcones. Similarly, in

Picture 6, each point in a two-dimensional cone must be inside both two-dimensional

cones with apex a point on the interior segment; distinguishing the order of the two

interior points again makes this simplicial. This introduces some extra faces of lower

dimension as well, making the f -vector (34, 264, 904, 1440, 840).

Computing the homology of this T4,4 yields that H4(T4,4) = Z
73 and that all other

homology groups are zero. This, along with the shelling for T3,n, yields the following

conjecture.

Conjecture 6.1 For all m and n, the complex Tm,n consisting of m × n matrices of

tropical rank two is shellable.

This conjecture is further strengthened by the computation (using similar meth-

ods) that T4,5 also has only top homology (Z301, to be precise.)

Another nice feature of the geometric description given by the eight pictures in

Figure 5 is that the duality of the simplicial complex is clearly present. Since we

are describing the space of 4 × 4 matrices of tropical rank two, the map given by

transposition should be an involution, and indeed we can see this in the simplicial

complex. In each picture, there are four points and four leaves, and by looking at the

relative distances between the points and the leaves, we can draw a dual picture where

the points become the leaves and the leaves become the points. For instance, consider

Figure 6. In the left-hand diagram, leaf 1 is closest to A, second closest to C, and

equidistant from B and D. Leaf 2 is closest to D, then B, then C, then A. Point A

(which can be anywhere in a two-dimensional cone) is closest to leaves 1 and 4, and

furthest from leaves 2 and 3; the rest of the points and leaves can have their distances

to members of the other category similarly ordered. In the right-hand diagram, the

same orderings hold, except that the points are now represented by leaves and vice

versa. (The points 1 and 4 can be on leaf A in either order in the cone represented by

the right-hand diagram.)

In this fashion, we can compute that a cone in the class of Picture 1 will be dual to

another cone in that class, as the upper-left leaf becomes the point in the box, the two

points on the upper-left leaf become the two leaves of the box, and so on. Similarly, the

cones in Picture 2 are dual to other cones in Picture 2, the cones in Picture 3 are dual
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to the cones in Picture 6 (after those cones are split into simplices by distinguishing

the order of points on the initial segment), the cones in Picture 4 are dual to each other

(again after distinguishing the bottom point to make them simplicial), the cones in

Picture 5 are dual to the cones in Picture 8 (as in Figure 6), and the cones in Picture

7 are dual to each other.

Meanwhile, the subcomplex of Barvinok rank-two configurations, B4,4, is easily

picked out; this is the union of the facets corresponding to pictures 1, 3, 4, and 6.

Computing the homology yields some interesting results reminiscent of the B3,n case;

H�(B4,4) = (0, Z/2, Z/2, 0, Z). Thus it has top homology Z, and torsion in dimensions 1

and 2. Computing homology for B4,5 yields similarly striking results; we get H�(B4,5) =

(0, Z/2, 0, Z, Z/2, 0). Finally, H�(B4,6) = (0, Z/2, 0, 0, Z/2, 0, Z).

As in the three-dimensional case, there is a suggestive way to decompose the

Barvinok subcomplex B4,n; indeed, a similar technique works for Bm,n. The facets of

T4,n which are in B4,n are those where the points are contained in the convex hull of

two points; that is, the configurations where no pair of leaves on the same side of the

bridge contain points. These decompose into twelve classes, depending on the direction

of the bridge (three choices) and a choice of a leaf from each side which is allowed to

contain points (four choices.) These twelve classes of cones intersect predictably; for

instance, the class in Figure 7 shares facets with three other classes as depicted. If

we could now bound the homology of each of these classes and of their intersections

(each of which corresponds to a picture) independent of n, we could then bound the

homology of the entire complex.

Furthermore, each class has a nice combinatorial description as a complex. Its

faces correspond to length-n strings in the alphabet {1, 2, 3, A,B,C}, where 1 and 2

correspond to the leaves, 3 corresponds to the interior segment, A and B correspond to

the intersection points of the two leaves with the interior segment, and C corresponds

to the central point in the case where the interior segment has length 0. The set of

strings corresponding to actual faces consists of all strings with the following properties:

• If the string contains C, it contains none of {A,B, 3}.

• The string does not contain only the symbols {1, 3, A} or only the symbols

{2, 3, B}.

The dimension of the cone is equal to the number of 1’s, 2’s, and 3’s, plus one

if the string does not contain any C’s (i.e. corresponds to an unfused picture.) The

intersection rule is also easy to give combinatorially. We simply intersect the strings

coordinate-wise, via the following intersection table, which just corresponds to finding

the largest picture which is contained in both component pictures.

1 2 3 A B C
1 1 C A A C C
2 C 2 B C B C
3 A B 3 A B C
A A C A A C C
B C B B C B C
C C C C C C C
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Figure 7. The picture on the right-hand side represents a class of four points in
TP

3 of Barvinok rank two, namely the class where all four points are in the indicated
region of the indicated tree. The three pictures on the left are three other classes
sharing facets with the class on the right; the shared facet class is given by four points
on the indicated region of the picture labeling the edge.

After doing the coordinate-wise intersection, if there are any C’s in the resulting

string, change all the A’s, B’s, and 3’s to C’s. The final string then corresponds to the

intersection of the two cones.

This procedure works for higher d as well, yielding a decomposition of Bd,n into

simple picture classes which intersect nicely with each other, and whose members also

intersect via a similar coordinate-wise intersection rule; the number of such classes

does not depend on n. In this fashion, it seems reasonably likely that the behavior

we have observed holds in general: that the homology of Bd,n does not increase in

complexity as n gets large.

7. Conclusion

In this paper, we have demonstrated how the complex Td,n of d × n matrices with

tropical rank two has a nice decomposition, which in general is much smaller than the

Gröbner decomposition, and which can be expressed in terms of pictures. In addition,

the space Bd,n of d × n matrices of Barvinok rank two is a subcomplex, and both

complexes are pure. For dimension three, we show that Td,n is shellable, while Bd,n

has periodic and small homology; we conjecture that these are true for arbitrary d

and n.

The above framework of pictures can also be implemented for rank higher than

two. The rank-two case is the most important for two reasons: first of all, it has a
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phylogenetic interpretation, and second of all, we have a good description of lines. In

rank higher than two, tropical and Kapranov ranks diverge, although they agree in

the case of corank one (n points on a hyperplane.) In addition, the space of r-planes

in TP
d−1 is in general a complicated one. Nonetheless, the methods we have presented

here may well be applicable to such a study.
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